LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidic Device Automatically Monitors Whole Blood Hemostasis

By LabMedica International staff writers
Posted on 20 Jan 2016
Image: Novel hemostasis monitoring microdevice comprises a microfluidic mechanism with hollow channels through which blood is flowed and a proprietary algorithm for analyzing patient-specific data to predict when blood clots will form (Photo courtesy of Wyss Institute).
Image: Novel hemostasis monitoring microdevice comprises a microfluidic mechanism with hollow channels through which blood is flowed and a proprietary algorithm for analyzing patient-specific data to predict when blood clots will form (Photo courtesy of Wyss Institute).
An assay has been devised for testing blood's clotting tendency, also known as hemostasis, which could one day prove lifesaving in a variety of clinical situations in which a patient's health is jeopardized by abnormal blood coagulation and platelet function.

The microfluidic based device assay can be used with blood samples or potentially be integrated into patients' blood flow lines; so that one day clinicians could have the foresight they need to prevent life-threatening events such as blood clotting or internal hemorrhaging.

Scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University (Boston, MA, USA) devised a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples.

The devices were designed to fit on a standard (75 × 50 mm) microscope slide to simplify microscopic analysis using appropriate software and they used SU8 2075 master templates (MicroChem Corporation; Newton, MA, USA) fabricated on Si (100) wafers using photolithography. The devices were fabricated using soft lithography of polydimethylsiloxane (PDMS). The device contains hollow channels that mimic the pathology of the narrowing of small blood vessels, which occurs in patients as a side effect of medical conditions or treatments and can often cause a shift in the fluid mechanics of blood flow that can lead to life-threatening blood clots or internal bleeds.

In a large animal study already conducted, the team perfused blood directly from a living vessel into a microfluidic device to measure clinical clotting parameters over time, and they recorded precise predictions for clotting times for blood samples that were far more accurate and faster than currently-used clinical assays. The real-time monitoring ability of the device could also assess patients' coagulation status almost continuously, in stark contrast to today's standard of once or twice a day testing procedures, thereby reducing the likelihood of toxic side effects resulting from anticoagulation therapies. The team also demonstrated that the device can detect abnormal platelet function in patients with a rare bleeding disorder that cannot be easily identified using conventional assays.

Abhishek Jain, PhD, a postdoctoral fellow and lead author of the study, said, “The physics of what's happening inside our bodies is a major contributor to the reasons why blood clots form or why clotting fails during surgeries, traumas, or extracorporeal medical procedures. By mimicking the physics of blood clotting in our device more precisely, we hope this technology can one day be used to save lives.” The study was published on January 6, 2016, in the journal Nature Communications.

Related Links:

Wyss Institute for Biologically Inspired Engineering 
MicroChem Corporation 


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more