Protein Patterning: Novel Tool for Studying Sepsis
|
By LabMedica International staff writers Posted on 18 Jan 2016 |

Image: Graph of mass-spectrometry-based mapping of tissue-specific protein in blood plasma, from the study of sepsis using quantitative targeted proteomics (Photo courtesy of Malmström laboratory, Lund University).
In a new approach using quantitative targeted proteomics, researchers have for the first time developed a way to use mass-spectrometry to measure hundreds of organ proteins in a single blood sample. The resulting protein patterns can help determine sepsis severity, which organs have been damaged, and may lead to faster diagnostics.
“We use the blood as a mirror reflecting what happens in the body,” said Johan Malmström biomedical scientist at Lund University (Lund, Sweden), whose brothers, medical intern Erik Malmström (Lund U.) and bioinformatician Lars Malmström University of Zurich (Zurich, Switzerland) are fellow researchers on the study. The team has succeeded to map the majority of all detected proteins from vital organs (e.g., heart, lung, liver, spleen, blood vessels) and have listed which proteins were specific to each organ.
“If you see in a blood sample that the amount of proteins from a specific organ significantly increases, it indicates damage to this organ. The method provides an understanding of the molecular events that take place during the course of a disease, and the possibility, using the same analysis, to study how different organs are affected”, explained Dr. E. Malmström.
Sepsis is a very complicated and precarious condition in which the immune system starts to react erroneously in different ways to the bacterial infection. It is often difficult to diagnose because symptoms (including high breathing rate, fever, rapid pulse, pain, confusion) occur in milder conditions as well. Disease progression can be very fast and become fatal within a few hours. Therefore, there is a great need for faster diagnosis and better understanding of the course of the disease.
Another researcher, Dr. Adam Linder (Lund U.), has begun to develop a diagnostic method based on HBP, a protein emitted from white blood cells and reflects the risk of hypotension. The Malmström group’s study of hundreds of different proteins could eventually be used to select other important proteins that can serve as biomarkers for different aspects of sepsis.
The new method is already an important research tool: “There is so much we don’t know about sepsis. Why do not all patients react the same way—why do some organs suffer the most damage in some patients and not in others? Do different bacteria cause the disease to progress? Can you divide patients into different subgroups, or bacteria, or does each new combination of patients and bacteria lead to a specific form of sepsis?” asked Dr. E. Malmström. The researchers have conducted their studies on animals and are now moving on to human tissue. Through a collaboration with surgeons at Skane University Hospital they have obtained samples of healthy tissue. Protein patterns of these samples can then be compared with the corresponding organ tissues in sepsis patients.
“Protein mapping like this has never been done before. The method can also be applied to other diseases for studying how pathological changes in various organs are reflected in a blood sample,” said Dr. Johan Malmström.
The study, by Malmström E, Kilsgard O, Hauri S, Smeds E, Herwald H, Malmström L, & Malmström J, was published January 6, 2016, in the journal Nature Communications.
Related Links:
Lund University
University of Zurich
“We use the blood as a mirror reflecting what happens in the body,” said Johan Malmström biomedical scientist at Lund University (Lund, Sweden), whose brothers, medical intern Erik Malmström (Lund U.) and bioinformatician Lars Malmström University of Zurich (Zurich, Switzerland) are fellow researchers on the study. The team has succeeded to map the majority of all detected proteins from vital organs (e.g., heart, lung, liver, spleen, blood vessels) and have listed which proteins were specific to each organ.
“If you see in a blood sample that the amount of proteins from a specific organ significantly increases, it indicates damage to this organ. The method provides an understanding of the molecular events that take place during the course of a disease, and the possibility, using the same analysis, to study how different organs are affected”, explained Dr. E. Malmström.
Sepsis is a very complicated and precarious condition in which the immune system starts to react erroneously in different ways to the bacterial infection. It is often difficult to diagnose because symptoms (including high breathing rate, fever, rapid pulse, pain, confusion) occur in milder conditions as well. Disease progression can be very fast and become fatal within a few hours. Therefore, there is a great need for faster diagnosis and better understanding of the course of the disease.
Another researcher, Dr. Adam Linder (Lund U.), has begun to develop a diagnostic method based on HBP, a protein emitted from white blood cells and reflects the risk of hypotension. The Malmström group’s study of hundreds of different proteins could eventually be used to select other important proteins that can serve as biomarkers for different aspects of sepsis.
The new method is already an important research tool: “There is so much we don’t know about sepsis. Why do not all patients react the same way—why do some organs suffer the most damage in some patients and not in others? Do different bacteria cause the disease to progress? Can you divide patients into different subgroups, or bacteria, or does each new combination of patients and bacteria lead to a specific form of sepsis?” asked Dr. E. Malmström. The researchers have conducted their studies on animals and are now moving on to human tissue. Through a collaboration with surgeons at Skane University Hospital they have obtained samples of healthy tissue. Protein patterns of these samples can then be compared with the corresponding organ tissues in sepsis patients.
“Protein mapping like this has never been done before. The method can also be applied to other diseases for studying how pathological changes in various organs are reflected in a blood sample,” said Dr. Johan Malmström.
The study, by Malmström E, Kilsgard O, Hauri S, Smeds E, Herwald H, Malmström L, & Malmström J, was published January 6, 2016, in the journal Nature Communications.
Related Links:
Lund University
University of Zurich
Latest Hematology News
- New Guidelines Aim to Improve AL Amyloidosis Diagnosis
- Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
- Fast and Easy Test Could Revolutionize Blood Transfusions
- High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
- AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
- MRD Tests Could Predict Survival in Leukemia Patients
- Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
- Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







