Test Results of Fingerstick Blood Vary Significantly
By LabMedica International staff writers Posted on 29 Nov 2015 |

Image: Blood obtained via fingerstick is commonly used in point-of-care assays (Photo courtesy of The Health).
Blood obtained via fingerstick is commonly used in point-of-care assays, but few studies have assessed variability in parameters obtained from successive drops of fingerstick blood, which may cause problems for clinical decision making and for assessing accuracy of point-of-care tests.
The most accurate way to carry out medial laboratory tests is to draw blood from a vein and send it to a laboratory but sometimes, such as in low-resource settings, results are needed more rapidly, or the health professional is not trained to draw vein-blood, or there is no laboratory. In such settings, there is a higher reliance on fingerstick tests.
Bioengineers at Rice University (Houston, TX, USA) used a hematology analyzer to analyze the hemoglobin concentration, total white blood cell (WBC) count, three-part WBC differential, and platelet count in six successive 20 µL of blood collected from one fingerstick from each of 11 donors. The team used a hemoglobinometer to measure the hemoglobin concentration of 10 drops of fingerstick blood from each of seven donors to check whether the minimum droplet size made a difference and they checked all the results against blood taken from donors' veins. They also followed best practice to ensure accurate results. For example, they wiped away the first droplet to remove traces of disinfectant, and they did not squeeze or "milk" the finger.
The results showed that hemoglobin content, platelet count and white blood cell count varied significantly from drop to drop. The average percent coefficient of variation (CV) for successive drops of fingerstick blood was higher by up to 3.4 times for hemoglobin, 5.7 times for WBC count, three times for lymphocyte count, 7.7 times for granulocyte count, and four times for platelets than in venous controls measured using a hematology analyzer. The average percent CV for fingerstick blood was up to five times higher for hemoglobin than venous blood measured using a point-of-care hemoglobinometer. The investigators found that averaging the results of six to nine successive droplet tests produced results on a par with the venous blood tests.
Meaghan M. Bond, a doctoral student and first author of the study, said, “In some donors, the hemoglobin concentration changed by more than 2 g/dL in the span of two successive drops of blood. Our results show that people need to take care to administer fingerstick tests in a way that produces accurate results because accuracy in these tests is increasingly important for diagnosing conditions like anemia, infections and sickle-cell anemia, malaria, HIV and other diseases.” The study was published on November 18, 2015, in the American Journal of Clinical Pathology.
Related Links:
Rice University
The most accurate way to carry out medial laboratory tests is to draw blood from a vein and send it to a laboratory but sometimes, such as in low-resource settings, results are needed more rapidly, or the health professional is not trained to draw vein-blood, or there is no laboratory. In such settings, there is a higher reliance on fingerstick tests.
Bioengineers at Rice University (Houston, TX, USA) used a hematology analyzer to analyze the hemoglobin concentration, total white blood cell (WBC) count, three-part WBC differential, and platelet count in six successive 20 µL of blood collected from one fingerstick from each of 11 donors. The team used a hemoglobinometer to measure the hemoglobin concentration of 10 drops of fingerstick blood from each of seven donors to check whether the minimum droplet size made a difference and they checked all the results against blood taken from donors' veins. They also followed best practice to ensure accurate results. For example, they wiped away the first droplet to remove traces of disinfectant, and they did not squeeze or "milk" the finger.
The results showed that hemoglobin content, platelet count and white blood cell count varied significantly from drop to drop. The average percent coefficient of variation (CV) for successive drops of fingerstick blood was higher by up to 3.4 times for hemoglobin, 5.7 times for WBC count, three times for lymphocyte count, 7.7 times for granulocyte count, and four times for platelets than in venous controls measured using a hematology analyzer. The average percent CV for fingerstick blood was up to five times higher for hemoglobin than venous blood measured using a point-of-care hemoglobinometer. The investigators found that averaging the results of six to nine successive droplet tests produced results on a par with the venous blood tests.
Meaghan M. Bond, a doctoral student and first author of the study, said, “In some donors, the hemoglobin concentration changed by more than 2 g/dL in the span of two successive drops of blood. Our results show that people need to take care to administer fingerstick tests in a way that produces accurate results because accuracy in these tests is increasingly important for diagnosing conditions like anemia, infections and sickle-cell anemia, malaria, HIV and other diseases.” The study was published on November 18, 2015, in the American Journal of Clinical Pathology.
Related Links:
Rice University
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
A tumor marker is a substance found in the body that may signal the presence of cancer. These substances, which can include proteins, genes, molecules, or other biological compounds, are either produced... Read more
Urine Test Diagnoses Early-Stage Prostate Cancer
Prostate cancer is one of the leading causes of death among men worldwide. A major challenge in diagnosing the disease is the absence of reliable biomarkers that can detect early-stage tumors.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more