Molecular Light Shed on “Dark” Cellular Receptors
|
By LabMedica International staff writers Posted on 30 Dec 1899 |
Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally occurring ligands or with drugs.
To probe the activity of orphan G protein-coupled receptors (GPCRs), researchers at the University of North Carolina School of Medicine (Chapel Hill, NC, USA) and University of California, San Francisco (UCSF; San Francisco, CA, USA) developed a technique that combines computer modeling, yeast cell-based molecular screening, and mouse models.
Chemical signals remain unknown for many cell receptors in the human genome. These “orphan” receptors are highly expressed in particular tissues but their functions remain a mystery. They are considered “dark” elements of the genome and yet hold great potential for cell biology and medical therapeutics. “About 27% of FDA-approved drugs act through GPCRs. They are considered to be among the most useful targets for discovering new medications,” said Brian Shoichet, PhD, co-senior author and professor of pharmaceutical chemistry, UCSF. “We provide an integrated approach that we believe can be applied to many other receptors,” said Bryan L. Roth, MD, PhD, co-senior author and professor of pharmacology, UNC School of Medicine.
In the study, the tool was used to identify molecules that can modulate the orphan GPCR called GPR68 (or OGR1), a proton receptor highly expressed in the brain hippocampus. The Roth lab teamed up with the Shoichet lab, which developed the computational method. The goal was to predict those very few molecules that could modulate GPR68. Docking 3.1 million molecules predicted modulators, many of which were confirmed in functional assays. The researchers also found that the molecule “ogerin” activates GPR68. To understand how this affects brain function, mice were given ogerin and put through a battery of behavioral tests. Mice given ogerin were much less likely to learn to fear a specific stimulus, a fear-conditioning controlled by the hippocampus. Ogerin had no effect on control GPR68-knockout mice.
Xi-Ping Huang, PhD, co-first author and research assistant professor, UNC, said, “We used yeast-based screening techniques to find compounds that activate an orphan receptor. Then [co-first author] Joel Karpiak, a graduate student in Shoichet’s lab at UCSF, created a computer model and searched libraries of millions of compounds to find out what kind of molecular structure ensures proper binding and interaction with a specific receptor. Then, back in the lab, we tested new molecules and found a novel ligand.”
The same approach led to discovery of allosteric agonists and negative allosteric modulators for another orphan receptor, GPR65, suggesting that the tool has general applicability for identifying GPCR ligands. The tool opens a new door for both basic and applied research. The genome is still “an iceberg that is mostly submerged,” said Prof. Shoichet, “This paper illuminates a small piece of it, providing new reagents to modulate a previously dark, unreachable drug target. Just as important, the strategy should be useful to many other dark targets.”
The study, by Huang X-P, Karpiak J, et al., was published online ahead of print November 9, 2015, in the journal Nature.
Related Links:
University of North Carolina School of Medicine
University of California, San Francisco
To probe the activity of orphan G protein-coupled receptors (GPCRs), researchers at the University of North Carolina School of Medicine (Chapel Hill, NC, USA) and University of California, San Francisco (UCSF; San Francisco, CA, USA) developed a technique that combines computer modeling, yeast cell-based molecular screening, and mouse models.
Chemical signals remain unknown for many cell receptors in the human genome. These “orphan” receptors are highly expressed in particular tissues but their functions remain a mystery. They are considered “dark” elements of the genome and yet hold great potential for cell biology and medical therapeutics. “About 27% of FDA-approved drugs act through GPCRs. They are considered to be among the most useful targets for discovering new medications,” said Brian Shoichet, PhD, co-senior author and professor of pharmaceutical chemistry, UCSF. “We provide an integrated approach that we believe can be applied to many other receptors,” said Bryan L. Roth, MD, PhD, co-senior author and professor of pharmacology, UNC School of Medicine.
In the study, the tool was used to identify molecules that can modulate the orphan GPCR called GPR68 (or OGR1), a proton receptor highly expressed in the brain hippocampus. The Roth lab teamed up with the Shoichet lab, which developed the computational method. The goal was to predict those very few molecules that could modulate GPR68. Docking 3.1 million molecules predicted modulators, many of which were confirmed in functional assays. The researchers also found that the molecule “ogerin” activates GPR68. To understand how this affects brain function, mice were given ogerin and put through a battery of behavioral tests. Mice given ogerin were much less likely to learn to fear a specific stimulus, a fear-conditioning controlled by the hippocampus. Ogerin had no effect on control GPR68-knockout mice.
Xi-Ping Huang, PhD, co-first author and research assistant professor, UNC, said, “We used yeast-based screening techniques to find compounds that activate an orphan receptor. Then [co-first author] Joel Karpiak, a graduate student in Shoichet’s lab at UCSF, created a computer model and searched libraries of millions of compounds to find out what kind of molecular structure ensures proper binding and interaction with a specific receptor. Then, back in the lab, we tested new molecules and found a novel ligand.”
The same approach led to discovery of allosteric agonists and negative allosteric modulators for another orphan receptor, GPR65, suggesting that the tool has general applicability for identifying GPCR ligands. The tool opens a new door for both basic and applied research. The genome is still “an iceberg that is mostly submerged,” said Prof. Shoichet, “This paper illuminates a small piece of it, providing new reagents to modulate a previously dark, unreachable drug target. Just as important, the strategy should be useful to many other dark targets.”
The study, by Huang X-P, Karpiak J, et al., was published online ahead of print November 9, 2015, in the journal Nature.
Related Links:
University of North Carolina School of Medicine
University of California, San Francisco
Latest Biochemistry News
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







