LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lymphocyte Membrane Antigen Receptors Reside in Discrete Protein Islands

By LabMedica International staff writers
Posted on 27 Sep 2015
Image: Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane. However, the new study shows that these antigen receptors are organized in different membrane compartments, also called \"protein islands\", with diameters of 150–200 nanometers (Photo courtesy of Reth Research Group, BIOSS Centre for Biological Signaling Studies of the University of Freiburg).
Image: Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane. However, the new study shows that these antigen receptors are organized in different membrane compartments, also called \"protein islands\", with diameters of 150–200 nanometers (Photo courtesy of Reth Research Group, BIOSS Centre for Biological Signaling Studies of the University of Freiburg).
By applying several advanced imaging techniques, researchers have resolved the distribution of B-cell antigen receptors on the membranes of immune system lymphocytes.

The B-cell antigen receptors (BCRs) play an important role in the clonal selection of B-cells and their differentiation into antibody-secreting plasma cells. Mature B-cells have both immunoglobulin M (IgM) and IgD types of BCRs, which have identical antigen-binding sites and are both associated with the signaling subunits Ig-alpha and Ig-beta, but differ in their membrane-bound heavy chain isoforms.

Investigators at the BIOSS Centre for Biological Signaling Studies of the University of Freiburg (Germany) applied, two-color direct stochastic optical reconstruction microscopy (dSTORM), transmission electron microscopy (TEM), and the Fab-based proximity-ligation assay (Fab-PLA) to resolve the location and distribution of BCRs in the mature lymphocyte membrane.

Results published in the September 15, 2015, issue of the journal Science Signaling revealed that in contrast to the assumption that BCRs—like all proteins in the membrane—were freely diffusing molecules, dSTORM showed that IgM-BCRs and IgD-BCRs resided in the plasma membrane in different protein islands with average sizes of 150 and 240 nanometers, respectively. Upon B-cell activation, the BCR protein islands became smaller and more dispersed such that the IgM-BCRs and IgD-BCRs were found in close proximity to each other. Moreover, specific stimulation of one class of BCR had minimal effects on the organization of the other. These conclusions were supported by the findings from two-marker transmission electron microscopy and proximity ligation assays.

These results provide direct evidence for the nanoscale compartmentalization of the lymphocyte membrane. In addition, they suggest that upon B-cell activation, the different IgM and IgD protein islands form complexes, which allow the exchange of lipids and proteins. This could be the basis for the association of IgM with Raft-associated lipids and proteins, which is a well-known hallmark of B-cell activation.

The current study was a component of the University of Frieberg's BIOSS nanoscale explorer program (BiNEP), which is dedicated to developing better methods to resolve nano-structures that are smaller than the 250 nanometer diffraction limit of visible light.

Related Links:
BIOSS Centre for Biological Signaling Studies of the University of Freiburg


Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Specimen Radiography System
TrueView 200 Pro

DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
PURITAN MEDICAL