LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Membrane-Bound Enzyme Linked to Plaque Formation in Mouse Atherosclerosis Model

By LabMedica International staff writers
Posted on 21 Jul 2015
Image: Results presented in this study suggest that the enzyme CD39 can suppress the plaque buildup that may trigger heart attack or stroke (Photo courtesy of the University of Michigan).
Image: Results presented in this study suggest that the enzyme CD39 can suppress the plaque buildup that may trigger heart attack or stroke (Photo courtesy of the University of Michigan).
Cardiac disease researchers working with a mouse model of atherosclerosis have found that that a specific membrane bound enzyme has the potential to inhibit build-up of plaque and reduce risk of heart attack or stroke.

Investigators at the University of Michigan (Ann Arbor, USA) worked with the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis to examine the role of the enzyme CD39 (ectonucleotide tri(di)phosphohydrolase-1 or ENTPD1) in the process of plaque formation. This enzyme metabolizes locally released, intravascular ATP and ADP, thereby eliminating these pro-thrombotic and pro-inflammatory signaling molecules.

The investigators reported in the June 29, 2015, online edition of the Journal of Clinical Investigation that when animals fed a high-fat diet were compared, it was seen that ApoE-deficient mice that also lacked CD39 had a plaque burden that was markedly increased along with circulating markers of platelet activation. CD39 was prominently expressed in stable blood flow regions and was diminished in areas subjected to disturbed flow. Thus, CD39 activation followed the pattern of plaque formation.

In mice, disturbed blood flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced protective CD39 expression in human endothelial cells.

“Better lifestyles and improved treatments have slowed the rates of death from atherosclerosis, but if CD39 proves to be as critical a factor in humans as in mice, it would be a major step forward in understanding heart disease,” said senior author Dr. David Pinsky, professor of cardiology at the University of Michigan.

Related Links:

University of Michigan


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Portable Electronic Pipette
Mini 96
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
GLOBE SCIENTIFIC, LLC