Nanoparticle Packaging Dramatically Increases Potency of Anti-Cardiovascular Disease Drug
|
By LabMedica International staff writers Posted on 06 Jul 2015 |
![Image: The buildup of fatty substances in blood vessels caused by atherosclerosis stiffens and narrows the blood vessels resulting in the death of heart muscle (Photo courtesy of [US] National Heart, Lung, and Blood Institute). Image: The buildup of fatty substances in blood vessels caused by atherosclerosis stiffens and narrows the blood vessels resulting in the death of heart muscle (Photo courtesy of [US] National Heart, Lung, and Blood Institute).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-07-06/GMS-208.jpg)
Image: The buildup of fatty substances in blood vessels caused by atherosclerosis stiffens and narrows the blood vessels resulting in the death of heart muscle (Photo courtesy of [US] National Heart, Lung, and Blood Institute).
The use of biodegradable polymer nanoparticles to encapsulate a promising drug for treating atherosclerosis increased its residence time in the body of a treated mouse from less than one hour to at least four hours (and up to 48 hours or longer).
The drug, D-PDMP (D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol), is a glycosphingolipid synthesis inhibitor. Previous studies had shown that it held considerable promise for the treatment of atherosclerosis and cardiac hypertrophy, but rapid in vivo clearance severely hindered its use in the clinical setting.
To overcome this impediment, investigators at Johns Hopkins University (Baltiomore, MD, USA) sequestered D-PDMP inside a biodegradable polymer composed of polyethylene glycol (PEG) and sebacic acid (SA).
Some PEG-SA nanoparticles were labeled with PEG that contained a radioactive iodine tracer to allow in vivo bio-distribution and release kinetics of D-PDMP to be determined by using gamma-scintigraphy and subsequently, by mass spectrometry. Results published in the June 3, 2015, online edition of the journal Biomaterials revealed that polymer encapsulation increased the residence time of D-PDMP in the body of a treated mouse from less than one hour to at least four hours (and up to 48 hours or longer).
The substantially increased in vivo longevity provided by polymer encapsulation resulted in a 10-fold gain in the drug's efficacy for interfering with atherosclerosis and cardiac hypertrophy in a model based on mice genetically engineered to lack the gene for the apolipoprotein E receptor that were fed a high fat and high cholesterol diet.
"Our experiments illustrate clearly that while content is important, packaging can make or break a drug," said senior author Dr. Subroto Chatterjee, professor of medicine and pediatrics at Johns Hopkins University. "In our study, the right packaging vastly improved the drug's performance and its ability not merely to prevent disease but to mitigate some of its worst manifestations."
Related Links:
Johns Hopkins University
The drug, D-PDMP (D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol), is a glycosphingolipid synthesis inhibitor. Previous studies had shown that it held considerable promise for the treatment of atherosclerosis and cardiac hypertrophy, but rapid in vivo clearance severely hindered its use in the clinical setting.
To overcome this impediment, investigators at Johns Hopkins University (Baltiomore, MD, USA) sequestered D-PDMP inside a biodegradable polymer composed of polyethylene glycol (PEG) and sebacic acid (SA).
Some PEG-SA nanoparticles were labeled with PEG that contained a radioactive iodine tracer to allow in vivo bio-distribution and release kinetics of D-PDMP to be determined by using gamma-scintigraphy and subsequently, by mass spectrometry. Results published in the June 3, 2015, online edition of the journal Biomaterials revealed that polymer encapsulation increased the residence time of D-PDMP in the body of a treated mouse from less than one hour to at least four hours (and up to 48 hours or longer).
The substantially increased in vivo longevity provided by polymer encapsulation resulted in a 10-fold gain in the drug's efficacy for interfering with atherosclerosis and cardiac hypertrophy in a model based on mice genetically engineered to lack the gene for the apolipoprotein E receptor that were fed a high fat and high cholesterol diet.
"Our experiments illustrate clearly that while content is important, packaging can make or break a drug," said senior author Dr. Subroto Chatterjee, professor of medicine and pediatrics at Johns Hopkins University. "In our study, the right packaging vastly improved the drug's performance and its ability not merely to prevent disease but to mitigate some of its worst manifestations."
Related Links:
Johns Hopkins University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreMolecular Diagnostics
view channel
Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more
Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more






 assay.jpg)
