We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA-Antibody Hybrid Molecule Shown to Be Effective Antibacterial Agent

By LabMedica International staff writers
Posted on 18 May 2015
Image: Alphamers (purple) act as homing beacons, attracting pre-existing anti-alpha-Gal antibodies (green) to the bacterial surface (Photo courtesy of Altermune Technologies).
Image: Alphamers (purple) act as homing beacons, attracting pre-existing anti-alpha-Gal antibodies (green) to the bacterial surface (Photo courtesy of Altermune Technologies).
Image: Dr. Kary Mullis, founder of Altermune Technologies, received the Nobel Prize for chemistry in 1993 for his invention of the polymerase chain reaction (PCR) )Photo courtesy of Altermune Technologies).
Image: Dr. Kary Mullis, founder of Altermune Technologies, received the Nobel Prize for chemistry in 1993 for his invention of the polymerase chain reaction (PCR) )Photo courtesy of Altermune Technologies).
A hybrid molecule comprising an aptamer attached to a trisaccharide terminating with alpha-gal (N-acetyl-glucosamine) was shown in a proof-of-principle study to be an effective antibacterial agent.

Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies, as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications. Relative to monoclonal antibodies, aptamers are small, stable, and non-immunogenic.

Humans do not express the galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl-glucosamine (alpha-Gal) epitope. However, as a result of exposure to alpha-Gal in the environment, humans develop a large quantity of circulating antibodies that are specific for this trisaccharide.

Investigators at the University of California, San Diego (USA) developed a DNA aptamer that was able to bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. To the 5′ end of this aptamer they conjugated an alpha-Gal epitope. This hybrid molecule was termed an "alphamer." The intent was that the aptamer segment of the alphamer would attach the molecule to the target bacterium while the alpha-Gal fragment would bind to the body's normally circulating anti-alpha-Gal antibodies.

In a paper published in the May 5, 2015, online edition of the Journal of Molecular Medicine the investigators showed that an anti-GAS alphamer could recruit anti-Gal antibodies to the streptococcal surface in an alpha-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS organisms in human whole blood.

These results constituted the first in vitro proof of concept that alphamers had the potential to redirect preexisting antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response.

"We are picturing a future in which doctors have a case full of pathogen-specific alphamers at their disposal," said senior author Dr. Victor Nizet, professor of pediatrics and pharmacy at the University of California, San Diego. "They see an infected patient, identify the causative bacteria, and pull out the appropriate alphamer to instantly enlist the support of the immune system in curing the infection."

The alphamer concept was attributed to contributing author Dr. Kary Mullis, winner of the 1993 Nobel Prize for chemistry for his invention of the polymerase chain reaction (PCR), technique. Dr. Mullis has established a biotech company, Altermune Technologies (Irvine, CA, USA), to develop alphamers into commercially viable therapeutic tools.

Related Links:

University of California, San Diego
Altermune Technologies


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
GLOBE SCIENTIFIC, LLC