We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA-Antibody Hybrid Molecule Shown to Be Effective Antibacterial Agent

By LabMedica International staff writers
Posted on 18 May 2015
Print article
Image: Alphamers (purple) act as homing beacons, attracting pre-existing anti-alpha-Gal antibodies (green) to the bacterial surface (Photo courtesy of Altermune Technologies).
Image: Alphamers (purple) act as homing beacons, attracting pre-existing anti-alpha-Gal antibodies (green) to the bacterial surface (Photo courtesy of Altermune Technologies).
Image: Dr. Kary Mullis, founder of Altermune Technologies, received the Nobel Prize for chemistry in 1993 for his invention of the polymerase chain reaction (PCR) )Photo courtesy of Altermune Technologies).
Image: Dr. Kary Mullis, founder of Altermune Technologies, received the Nobel Prize for chemistry in 1993 for his invention of the polymerase chain reaction (PCR) )Photo courtesy of Altermune Technologies).
A hybrid molecule comprising an aptamer attached to a trisaccharide terminating with alpha-gal (N-acetyl-glucosamine) was shown in a proof-of-principle study to be an effective antibacterial agent.

Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies, as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications. Relative to monoclonal antibodies, aptamers are small, stable, and non-immunogenic.

Humans do not express the galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl-glucosamine (alpha-Gal) epitope. However, as a result of exposure to alpha-Gal in the environment, humans develop a large quantity of circulating antibodies that are specific for this trisaccharide.

Investigators at the University of California, San Diego (USA) developed a DNA aptamer that was able to bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. To the 5′ end of this aptamer they conjugated an alpha-Gal epitope. This hybrid molecule was termed an "alphamer." The intent was that the aptamer segment of the alphamer would attach the molecule to the target bacterium while the alpha-Gal fragment would bind to the body's normally circulating anti-alpha-Gal antibodies.

In a paper published in the May 5, 2015, online edition of the Journal of Molecular Medicine the investigators showed that an anti-GAS alphamer could recruit anti-Gal antibodies to the streptococcal surface in an alpha-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS organisms in human whole blood.

These results constituted the first in vitro proof of concept that alphamers had the potential to redirect preexisting antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response.

"We are picturing a future in which doctors have a case full of pathogen-specific alphamers at their disposal," said senior author Dr. Victor Nizet, professor of pediatrics and pharmacy at the University of California, San Diego. "They see an infected patient, identify the causative bacteria, and pull out the appropriate alphamer to instantly enlist the support of the immune system in curing the infection."

The alphamer concept was attributed to contributing author Dr. Kary Mullis, winner of the 1993 Nobel Prize for chemistry for his invention of the polymerase chain reaction (PCR), technique. Dr. Mullis has established a biotech company, Altermune Technologies (Irvine, CA, USA), to develop alphamers into commercially viable therapeutic tools.

Related Links:

University of California, San Diego
Altermune Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Automatic Nucleic Acid Extractor
GeneRotex 24

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more