Glucocorticoid Receptor Suppresses Tumor Formation by Ensuring Accurate Chromosome Segregation During Mitosis
|
By LabMedica International staff writers Posted on 20 Apr 2015 |

Image: Electrophoretic data confirmed disruption of mitosis in cells lacking GR (Photo courtesy of the University of Manchester).
A team of British molecular biologists has defined the mechanism by which glucocorticoid receptor (GR) regulates the process of mitosis to prevent errors in cell division that could lead to tumor formation.
GR is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. GR is expressed in almost every cell in the body and regulates genes controlling development, metabolism, and immune response. As the receptor gene is expressed in several forms, it has many different effects in various parts of the body. Unbound receptor resides in the cytosol of the cell. Binding of GR to glucocorticoids triggers its primary mechanism of action, which is the regulation of gene transcription. After the receptor is bound to glucocorticoid, the receptor-glucorticoid complex up-regulates the expression of anti-inflammatory proteins in the nucleus or represses the expression of pro-inflammatory proteins in the cytosol (by preventing the translocation of other transcription factors from the cytosol into the nucleus).
Investigators at the University of Manchester (United Kingdom) identified an additional role for GR related to regulation of cell division. They discovered that specifically modified GR species accumulated at the mitotic spindle during mitosis in a distribution that overlapped with enzymes of the Aurora kinase family. They found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation.
GR haploinsufficient mice (animals with only a single functional copy of the GR gene that did not produce enough of the gene product to bring about the wild-type condition) had an increased incidence of tumor formation, and these tumors were further depleted for GR, implying additional GR loss as a consequence of cell transformation. Reduced GR expression was identified in a panel of human liver, lung, prostate, colon, and breast cancers.
The unexpected role for the GR in promoting accurate chromosome segregation during mitosis marked GR as an authentic tumor suppressor gene. "Cancer is caused by cell division going wrong, but no one has previously looked at the role GR has to play in this process," said senior author Dr. David Ray, professor of human development at the University of Manchester. "It is now clear that it is vital."
The study was published in the April 6, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
University of Manchester
GR is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. GR is expressed in almost every cell in the body and regulates genes controlling development, metabolism, and immune response. As the receptor gene is expressed in several forms, it has many different effects in various parts of the body. Unbound receptor resides in the cytosol of the cell. Binding of GR to glucocorticoids triggers its primary mechanism of action, which is the regulation of gene transcription. After the receptor is bound to glucocorticoid, the receptor-glucorticoid complex up-regulates the expression of anti-inflammatory proteins in the nucleus or represses the expression of pro-inflammatory proteins in the cytosol (by preventing the translocation of other transcription factors from the cytosol into the nucleus).
Investigators at the University of Manchester (United Kingdom) identified an additional role for GR related to regulation of cell division. They discovered that specifically modified GR species accumulated at the mitotic spindle during mitosis in a distribution that overlapped with enzymes of the Aurora kinase family. They found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation.
GR haploinsufficient mice (animals with only a single functional copy of the GR gene that did not produce enough of the gene product to bring about the wild-type condition) had an increased incidence of tumor formation, and these tumors were further depleted for GR, implying additional GR loss as a consequence of cell transformation. Reduced GR expression was identified in a panel of human liver, lung, prostate, colon, and breast cancers.
The unexpected role for the GR in promoting accurate chromosome segregation during mitosis marked GR as an authentic tumor suppressor gene. "Cancer is caused by cell division going wrong, but no one has previously looked at the role GR has to play in this process," said senior author Dr. David Ray, professor of human development at the University of Manchester. "It is now clear that it is vital."
The study was published in the April 6, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
University of Manchester
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Detects Early Stage Pancreatic Cancer
Pancreatic cancer remains among the hardest cancers to detect early. In the UK, around 10,000 people are diagnosed each year, but only 5% survive beyond five years. Late diagnosis is a major factor—more... Read more
Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








