LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Neutrophil Motility Reveals Potential Sepsis Biomarker

By LabMedica International staff writers
Posted on 21 Dec 2014
Image: The microfluidic device for ascertaining neutrophil motility patterns (Photo courtesy of the BioMEMS Resource Center, Massachusetts General Hospital).
Image: The microfluidic device for ascertaining neutrophil motility patterns (Photo courtesy of the BioMEMS Resource Center, Massachusetts General Hospital).
The development of sepsis in patients with major burns may be predicted by abnormal motility patterns of white blood cells called neutrophils, measured through the microscopic channels of a novel device.

Since the symptoms of sepsis are similar to those of the systemic inflammation that occurs in almost every serious burn patient, diagnosing sepsis relies on culturing bacteria from the blood, a process that takes 12 to 24 hours.

Scientists and bioengineers at the Massachusetts General Hospital (Boston, MA, USA) took blood samples from patients with large thermal injuries admitted to the Massachusetts General Hospital (MGH). Enrolment criteria included burns covering at least 20% of total body surface area, age between 18 and 81, and included in the enrollment were both male and female, proportionally distributed among ethnic groups.

Neutrophils were isolated from whole blood by density gradient using the EasySep Human Neutrophil Kit (STEMCELL Technologies Inc.; Vancouver, BC, Canada). A microfluidic devise was assembled to generate chemical gradients in two simple steps performed at the beginning of the study, after which the device does not require any user intervention or external syringe pumps to operate. The microfluidic devices was made with two layers of photoresist SU8 (Microchem; Newton, MA, USA), the first one 3 µm thin and the second one 50 µm thick, were patterned on one silicon wafer by sequentially employing two photolithography masks and processing cycles. The wafer with patterned photoresist was used as a mold to produce polydimethylsiloxane parts, which were then bonded irreversibly to standard glass slides.

The team analyzed the ability of neutrophils from blood samples of 13 patients with serious burns, collected several times during their treatment, to move through the device when it was primed with one of two chemical attractants or with saline solution, and compared it with the movement of cells from three healthy volunteers. Neutrophils from healthy individuals moved quickly and efficiently through the device toward a chemical attractant, easily navigating around corners and posts, while cells from burn patients showed limited, slower and poorly organized movement toward the chemical signal. This movement of neutrophils in the absence of chemical signals was observed in samples taken from some patients several days before a diagnosis of sepsis could be made, and once effective antibiotic treatment began, the unusual movement pattern began to fade.

Daniel Irimia, MD, PhD, a leading author of the study said, “Since only a handful of rare genetic disorders affect neutrophil function, it has long been assumed that studying these cells was not important; but our findings indicate that neutrophils play a much more important role in sepsis than has been appreciated. We're also working to expand this investigation to other patients at risk for sepsis, to see if the findings from burn patients have broader application.” The study was published on December 9, 2014, in the journal Public Library of Science ONE.

Massachusetts General Hospital
STEMCELL Technologies Inc. 
Microchem

Related Links:
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more