PSA Gene Variants Distinguish Patients with Highly Aggressive Prostate Cancer
By LabMedica International staff writers Posted on 15 Oct 2014 |

Image: GS3 prostate cancer: The tissue still has recognizable glands, but the cells are darker. At high magnification, some of these cells have left the glands and are beginning to invade the surrounding tissue or having an infiltrative pattern. This corresponds to a moderately differentiated carcinoma (Photo courtesy of Wikimedia Commons).

Image: GS4 prostate cancer: The tissue has few recognizable glands. Many cells are invading the surrounding tissue in neoplastic clumps. This corresponds to a poorly differentiated carcinoma (Photo courtesy of Wikimedia Commons).
Cancer researchers have identified three mutations in the KLK3 (kallikrein-related peptidase 3) gene, which codes for prostate specific antigen (PSA), associated with biopsy-proven high-aggressive prostate cancer.
The three mutations or single nucleotide polymorphisms (SNPs) were among 72 prostate cancer susceptibility SNPs identified during genome-wide association studies of 1,827 white men with histologically confirmed prostate adenocarcinoma. SNPs associated with disease aggressiveness were identified by comparing high-aggressive (GS ≥8) and low-aggressive (GS ≤6) cases.
Investigators at The University of Texas MD Anderson Cancer Center (Houston, USA) reported that the three SNPs - rs2735839, rs10486567, and rs103294 -were associated with biopsy-proven high-aggressive (GS ≥8) prostate cancer. Furthermore, the frequency of the variant allele (A) at rs2735839 was significantly higher in patients with biopsy-proven GS4+3 disease than in those with GS3+4 disease.
The rs2735839 SNP is located 600 base pairs downstream of the KLK3 gene (encoding PSA) on chromosome 19q13.33 and has been shown to modulate PSA level, providing strong biologic plausibility for its association with prostate cancer aggressiveness.
The investigators also showed that rs2735839 could stratify patients with GS7 cancer, which is an intermediate grade of cancer accounting for 30 to 40% of all prostate cancers. This would be clinically important for more accurately assessing the clinical behavior of the intermediate-grade prostate cancer and for tailoring personalized treatment and post-treatment management.
"This is the first report that I am aware of that indicates a genetic variant can stratify GS7 prostate cancer patients," said contributing author Dr. Jian Gu, associate professor of epidemiology at the MD Anderson Cancer Center. "This is important because this group with heterogeneous prognosis is difficult to predict and there are no reliable biomarkers to stratify this group."
"Treatment options for the GS7 disease are controversial because the burden of combined treatment modalities may outweigh the potential benefit in some patients," said senior author Dr. Xifeng Wu, professor of epidemiology at the MD Anderson Cancer Center. "It is critical that we develop personalized treatments based on additional biomarkers to stratify GS7 prostate cancers. Additional biomarkers may help us achieve personalized clinical management of low and intermediate risk prostate cancer patients."
The study was published in the October 1, 2014, issue of the journal Clinical Cancer Research.
Related Links:
The University of Texas MD Anderson Cancer Center
The three mutations or single nucleotide polymorphisms (SNPs) were among 72 prostate cancer susceptibility SNPs identified during genome-wide association studies of 1,827 white men with histologically confirmed prostate adenocarcinoma. SNPs associated with disease aggressiveness were identified by comparing high-aggressive (GS ≥8) and low-aggressive (GS ≤6) cases.
Investigators at The University of Texas MD Anderson Cancer Center (Houston, USA) reported that the three SNPs - rs2735839, rs10486567, and rs103294 -were associated with biopsy-proven high-aggressive (GS ≥8) prostate cancer. Furthermore, the frequency of the variant allele (A) at rs2735839 was significantly higher in patients with biopsy-proven GS4+3 disease than in those with GS3+4 disease.
The rs2735839 SNP is located 600 base pairs downstream of the KLK3 gene (encoding PSA) on chromosome 19q13.33 and has been shown to modulate PSA level, providing strong biologic plausibility for its association with prostate cancer aggressiveness.
The investigators also showed that rs2735839 could stratify patients with GS7 cancer, which is an intermediate grade of cancer accounting for 30 to 40% of all prostate cancers. This would be clinically important for more accurately assessing the clinical behavior of the intermediate-grade prostate cancer and for tailoring personalized treatment and post-treatment management.
"This is the first report that I am aware of that indicates a genetic variant can stratify GS7 prostate cancer patients," said contributing author Dr. Jian Gu, associate professor of epidemiology at the MD Anderson Cancer Center. "This is important because this group with heterogeneous prognosis is difficult to predict and there are no reliable biomarkers to stratify this group."
"Treatment options for the GS7 disease are controversial because the burden of combined treatment modalities may outweigh the potential benefit in some patients," said senior author Dr. Xifeng Wu, professor of epidemiology at the MD Anderson Cancer Center. "It is critical that we develop personalized treatments based on additional biomarkers to stratify GS7 prostate cancers. Additional biomarkers may help us achieve personalized clinical management of low and intermediate risk prostate cancer patients."
The study was published in the October 1, 2014, issue of the journal Clinical Cancer Research.
Related Links:
The University of Texas MD Anderson Cancer Center
Latest Pathology News
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more