Novel Diagnostic Test Developed for Sickle Cell Disease
|
By LabMedica International staff writers Posted on 08 Sep 2014 |

Image: Scientists have developed a simple new test for sickle cell disease that provides results in just 12 minutes and costs as little as USD 0.5 — far simpler, faster, and cheaper than current tests (Photo courtesy of Dr. A. Kumar and Harvard University).
Researchers have developed a simple, rapid, low-cost test for sickle cell disease (SCD) that could enable large-scale global screening also of children in underprivileged regions, such as those in Africa and India.
A team led by Harvard University (Cambridge, MA, USA) postdoctoral fellow Ashok Kumar, PhD, and Prof. George Whitesides have developed a low-cost, novel test for SCD that provides results in just 12 minutes. “The tests we have today work great, they have a very high sensitivity,” said Dr. Kumar, “But the equipment needed to run them costs in the tens of thousands of dollars, and they take hours to run. That’s not amenable to rural clinics, or even some cities, where the medical infrastructure isn’t up to the standards we see in the US.” Although extensive analysis will be needed to determine whether the test is accurate enough to use in the field, when run against over 50 known clinical samples — 26 positive and 26 negative — it showed good sensitivity and specificity.
A chance meeting with Dr. Thomas Stossel, MD at Harvard-affiliated Brigham and Women’s Hospital had steered Dr. Kumar into focusing on SCD. “Initially, we started off working on malaria, because we thought when parasites invaded the cells, it would change their density,” he said, “But when I met Tom Stossel on a panel at the Harvard Medical School, he said, ‘You need to work on sickle cell.’ He’s a hematologist by training and has been working with a nonprofit in Zambia for the past decade, so he’s seen the need from the lack of a diagnostic tool.”
The method design is simple and works by connecting two long-understood principles. First, sickle cell red blood cells (RBCs) are denser than normal RBCs; second, many polymers, when mixed in water, automatically separate into layers ordered by density. Conventional methods to separate cells by density have relied on layering liquids with different density by hand. The new insight was to use the self-forming density layers. “When you mix the polymers with water, they separate just like oil and water,” said Dr. Kumar, “Even if you mix it up, it will still come back to those layers.” When the test was run with infected blood, the results were unmistakable. While healthy RBCs settled in the tubes at specific levels, the dense RBCs from blood infected with sickle cell settled significantly lower. The band of RBCs could clearly be seen by eye.
Next, “We wanted to make the test as simple as possible,” Dr. Kumar explained, “The idea was to make it something you could run from just a finger prick. Because these gradients assemble on their own, that meant we could make them in whatever volume we wanted, even a small capillary tube.” The design they chose is barely larger than a toothpick. In the field, running the test is as simple as uncapping the tube, pricking a patient’s finger, and allowing the blood to wick into the tube.
“There were studies recently that showed in sub-Saharan Africa between 50%-90% of the children born with sickle cell disease die before the age of 5,” said Dr. Kumar, “Whereas in the US people don’t die from this disease as children, they can still live a full life. So my hope is that if this test is effective, it can make [at least] some small dent in those numbers.”
The test is described in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), September 2, 2014, online before print.
Related Links:
Harvard University
A team led by Harvard University (Cambridge, MA, USA) postdoctoral fellow Ashok Kumar, PhD, and Prof. George Whitesides have developed a low-cost, novel test for SCD that provides results in just 12 minutes. “The tests we have today work great, they have a very high sensitivity,” said Dr. Kumar, “But the equipment needed to run them costs in the tens of thousands of dollars, and they take hours to run. That’s not amenable to rural clinics, or even some cities, where the medical infrastructure isn’t up to the standards we see in the US.” Although extensive analysis will be needed to determine whether the test is accurate enough to use in the field, when run against over 50 known clinical samples — 26 positive and 26 negative — it showed good sensitivity and specificity.
A chance meeting with Dr. Thomas Stossel, MD at Harvard-affiliated Brigham and Women’s Hospital had steered Dr. Kumar into focusing on SCD. “Initially, we started off working on malaria, because we thought when parasites invaded the cells, it would change their density,” he said, “But when I met Tom Stossel on a panel at the Harvard Medical School, he said, ‘You need to work on sickle cell.’ He’s a hematologist by training and has been working with a nonprofit in Zambia for the past decade, so he’s seen the need from the lack of a diagnostic tool.”
The method design is simple and works by connecting two long-understood principles. First, sickle cell red blood cells (RBCs) are denser than normal RBCs; second, many polymers, when mixed in water, automatically separate into layers ordered by density. Conventional methods to separate cells by density have relied on layering liquids with different density by hand. The new insight was to use the self-forming density layers. “When you mix the polymers with water, they separate just like oil and water,” said Dr. Kumar, “Even if you mix it up, it will still come back to those layers.” When the test was run with infected blood, the results were unmistakable. While healthy RBCs settled in the tubes at specific levels, the dense RBCs from blood infected with sickle cell settled significantly lower. The band of RBCs could clearly be seen by eye.
Next, “We wanted to make the test as simple as possible,” Dr. Kumar explained, “The idea was to make it something you could run from just a finger prick. Because these gradients assemble on their own, that meant we could make them in whatever volume we wanted, even a small capillary tube.” The design they chose is barely larger than a toothpick. In the field, running the test is as simple as uncapping the tube, pricking a patient’s finger, and allowing the blood to wick into the tube.
“There were studies recently that showed in sub-Saharan Africa between 50%-90% of the children born with sickle cell disease die before the age of 5,” said Dr. Kumar, “Whereas in the US people don’t die from this disease as children, they can still live a full life. So my hope is that if this test is effective, it can make [at least] some small dent in those numbers.”
The test is described in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), September 2, 2014, online before print.
Related Links:
Harvard University
Latest Hematology News
- New Guidelines Aim to Improve AL Amyloidosis Diagnosis
- Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
- Fast and Easy Test Could Revolutionize Blood Transfusions
- High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
- AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
- MRD Tests Could Predict Survival in Leukemia Patients
- Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
- Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







