LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Mutations Identified in Human Blood Diseases

By LabMedica International staff writers
Posted on 13 May 2014
Image: The UniCel DxH 800 cellular analysis system (Photo courtesy of Beckman Coulter).
Image: The UniCel DxH 800 cellular analysis system (Photo courtesy of Beckman Coulter).
A dozen mutations have been identified in the human genome that are involved in significant changes in complete blood counts and that explain the onset of occasionally severe biological disorders.

The number of red and white blood cells and platelets in the blood is an important clinical marker, as it helps doctors detect many hematological and other diseases and can also be used to determine the effectiveness of therapy for certain pathologies.

Scientists at the Montreal Heart Institute (MHI; Montreal, QC, Canada) and their international collaborators analyzed the DNA of 6,796 people who had donated specimens to the MHI Biobank by looking specifically at segments of DNA directly involved in protein function in the body. They also analyzed hemoglobin concentration, hematocrit levels, white blood cell (WBC) counts and platelet counts in 31,340 individuals genotyped on an exome array.

Blood cell counts and other related phenotypes were automatically generated with the UniCel DxH 800 cellular analysis system (Beckman Coulter; Brea, CA, USA). DNA samples from the clinical coordinating center were sent for genotyping and were placed on 96-well plates for processing using the HumanExome v1.0 Single Nucleotide Polymorphism (SNP) array (Illumina; San Diego, CA, USA).

The scientists specifically identified a significant mutation in the gene that encodes erythropoietin (EPO), a hormone that controls the production of red blood cells. They also identified a mutation in the Janus kinase 2 (JAK2) gene, which is responsible for a 50% increase in platelet counts and, in certain cases, for the onset of bone marrow diseases that can lead to leukemia.

The authors concluded that their results clearly demonstrated that rare and low-frequency coding variants contribute to phenotypic variation in human populations. The new missense variants in key regulators of hematopoiesis that were discovered have potential implications for diagnostic screening and drug development in a variety of hematological and inflammatory disorders. The study was published on April 28, 2014, in the journal Nature Genetics.

Related Links:

Montreal Heart Institute
Beckman Coulter 
Illumina 


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
ESR Analyzer
TEST1 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more