NMR Innovation Offers Insights into Protein Interaction
By LabMedica International staff writers Posted on 17 Jul 2013 |

Image: A permissive captor A computer rendering depicts a GroEL protein hunting down an Aβ protein. Four complementary styles of nuclear magnetic resonance spectroscopy contributed to an understanding of the protein-to-protein interaction (Photo courtesy of Fawzi lab at Brown University).
By taking a novel approach to nuclear magnetic resonance spectroscopy--a fusion of four techniques--scientists have been able to resolve a key interaction between two proteins that could never be seen before.
The findings were published the week of June 24, 2013, in the Proceedings of the National Academy of Sciences of the United States of America (PNAS). The interaction the researchers became the first ones to describe is nearly universal across all of life. A protein unit called a chaperone takes hold of a disordered smaller protein to help it find its correct folded conformation. The scientists, in this instance, initiated test-tube experiments where they hoped to visualize the capsule-shaped bacterial chaperone GroEL capture a disordered amyloid beta (A-beta) protein, a molecule that in humans is central in Alzheimer's disease.
The two proteins are well researched, but the motions they go through when they first meet, i.e., when the open GroEL capsule captures its target, have been invisible to scientists. Electron microscopy and X-ray crystallography are only good for taking snapshots of easily frozen moments in time. NMR is capable of sensing the interactions and kinetics of protein interactions as they occur, but in some cases, any single technique can provide only clues into what is actually going on.
Brown University (Providence, RI, USA) biologist Dr. Nicolas Fawzi, who was a post-doc in the group of Marius Clore’s at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) within the US National Institutes of Health (NIH; Bethesda, MD, USA), worked with coauthors and NIDDK researchers Drs. David Libich, Jinfa Yang, and Marius Clore assembling the interactions of the proteins by combining four different NMR techniques. They determined what each one could inform them about the interaction and built the case presented in PNAS.
“None of the four techniques alone gave us sufficient information,” said Dr. Fawzi, now an assistant professor in Brown’s department of molecular pharmacology, physiology, and biotechnology. “Only by using them all together would we be able to figure out the structure and motions of A-beta; when it was bound to GroEL. By having four indirect measurements together, that was able to give us a complete picture.”
The NMR techniques they used were lifetime line broadening, Carr-Purcell-Meinboom-Gill (CPMG) relaxation dispersion spectroscopy, and exchange-induced chemical shifts. “The fourth technique we employed was dark-state exchange saturation transfer [DEST] spectroscopy, which we had developed in my lab at the NIH in 2011,” said Dr. Clore, also the article’s corresponding author. “We were able to more effectively conduct our research by using that tool to corroborate and extend the information afforded by the other three measurements.”
The elusive process debated among molecular biologists was about what the GroEL chaperone requires of its captives at the moment they engage. Does it force them into a specific conformation? Does it hold on tightly while it closes its capsule lid around the smaller protein, or does the captive stay in motion at all?
What the investigators observed is that the GroEL is a permissive captor. It bound A-beta; at just two hydrophobic sites, leaving the smaller protein to otherwise swing in a range of conformations. It also did not keep it bound the entire time, letting it instead detach and re-bind. Basically, A-beta would jump off and on within GroEL’s binding cavity.
“By using these four techniques together we were able to extract information about the structure of the protein while it binds as well as how fast it comes on and off and what it's doing at each position,” Dr. Fawzi said. “Instead of forming more particular structure upon binding it appears to retain great conformational heterogeneity.”
The lifetime line-broadening technique, for example, informed them that the A-beta; was interacting with something big (GroEL), while the CPMG and chemical shift observations combined to show the length of time A-beta; spent on GroEL before unbinding, as well as the structural characteristics of A-beta; when it was bound to GroEL. DEST provided data that could validate much of the story of the other techniques.
Dr. Fawzi noted that GroEL’s relaxed strategy could be a matter of being able to bind many different proteins in disordered conformations, but also of saving energy. Forcing proteins into a specific conformation just to make and sustain the initial capture would require more energy than it is worth. Eventually, in moments after those the team resolved in this study, GroEL closes its lid and encapsulates its target proteins fully, according to Dr. Fawzi said. Thatis when it capitalizes on in compelling them to fold in the correct manner.
For molecular and structural biologists, the newly proven combination of NMR techniques could create a number of other cold cases of elusive interactions. “We can now look at how these big machines can do their job while they are working,” Dr. Fawzi said. “This is not just limited to this GroEL machine.”
Related Links:
Brown University
The findings were published the week of June 24, 2013, in the Proceedings of the National Academy of Sciences of the United States of America (PNAS). The interaction the researchers became the first ones to describe is nearly universal across all of life. A protein unit called a chaperone takes hold of a disordered smaller protein to help it find its correct folded conformation. The scientists, in this instance, initiated test-tube experiments where they hoped to visualize the capsule-shaped bacterial chaperone GroEL capture a disordered amyloid beta (A-beta) protein, a molecule that in humans is central in Alzheimer's disease.
The two proteins are well researched, but the motions they go through when they first meet, i.e., when the open GroEL capsule captures its target, have been invisible to scientists. Electron microscopy and X-ray crystallography are only good for taking snapshots of easily frozen moments in time. NMR is capable of sensing the interactions and kinetics of protein interactions as they occur, but in some cases, any single technique can provide only clues into what is actually going on.
Brown University (Providence, RI, USA) biologist Dr. Nicolas Fawzi, who was a post-doc in the group of Marius Clore’s at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) within the US National Institutes of Health (NIH; Bethesda, MD, USA), worked with coauthors and NIDDK researchers Drs. David Libich, Jinfa Yang, and Marius Clore assembling the interactions of the proteins by combining four different NMR techniques. They determined what each one could inform them about the interaction and built the case presented in PNAS.
“None of the four techniques alone gave us sufficient information,” said Dr. Fawzi, now an assistant professor in Brown’s department of molecular pharmacology, physiology, and biotechnology. “Only by using them all together would we be able to figure out the structure and motions of A-beta; when it was bound to GroEL. By having four indirect measurements together, that was able to give us a complete picture.”
The NMR techniques they used were lifetime line broadening, Carr-Purcell-Meinboom-Gill (CPMG) relaxation dispersion spectroscopy, and exchange-induced chemical shifts. “The fourth technique we employed was dark-state exchange saturation transfer [DEST] spectroscopy, which we had developed in my lab at the NIH in 2011,” said Dr. Clore, also the article’s corresponding author. “We were able to more effectively conduct our research by using that tool to corroborate and extend the information afforded by the other three measurements.”
The elusive process debated among molecular biologists was about what the GroEL chaperone requires of its captives at the moment they engage. Does it force them into a specific conformation? Does it hold on tightly while it closes its capsule lid around the smaller protein, or does the captive stay in motion at all?
What the investigators observed is that the GroEL is a permissive captor. It bound A-beta; at just two hydrophobic sites, leaving the smaller protein to otherwise swing in a range of conformations. It also did not keep it bound the entire time, letting it instead detach and re-bind. Basically, A-beta would jump off and on within GroEL’s binding cavity.
“By using these four techniques together we were able to extract information about the structure of the protein while it binds as well as how fast it comes on and off and what it's doing at each position,” Dr. Fawzi said. “Instead of forming more particular structure upon binding it appears to retain great conformational heterogeneity.”
The lifetime line-broadening technique, for example, informed them that the A-beta; was interacting with something big (GroEL), while the CPMG and chemical shift observations combined to show the length of time A-beta; spent on GroEL before unbinding, as well as the structural characteristics of A-beta; when it was bound to GroEL. DEST provided data that could validate much of the story of the other techniques.
Dr. Fawzi noted that GroEL’s relaxed strategy could be a matter of being able to bind many different proteins in disordered conformations, but also of saving energy. Forcing proteins into a specific conformation just to make and sustain the initial capture would require more energy than it is worth. Eventually, in moments after those the team resolved in this study, GroEL closes its lid and encapsulates its target proteins fully, according to Dr. Fawzi said. Thatis when it capitalizes on in compelling them to fold in the correct manner.
For molecular and structural biologists, the newly proven combination of NMR techniques could create a number of other cold cases of elusive interactions. “We can now look at how these big machines can do their job while they are working,” Dr. Fawzi said. “This is not just limited to this GroEL machine.”
Related Links:
Brown University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more