We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fine-Tuning Stem Cell Therapy to Repair the Heart

By LabMedica International staff writers
Posted on 27 Mar 2013
Stem cells have the potential to grow into a range of cell types, including heart cells. Researchers are now trying to refine the process of repairing and regenerating heart tissue damaged by a heart attack with stem cells.

A recent study from Cedars-Sinai Heart Institute (Los Angeles, CA, USA) suggests that stem cells may, undeniably, heal damaged hearts. The researchers treated 17 heart attack survivors with an infusion of stem cells taken from their own hearts. One year later, the amount of scar tissue had shrunk by about 50%. These findings look dramatic, but investigators are wondering if they an indication that they are close to perfecting stem cell therapy.

“This is a field where, depending on which investigator you ask, you can get incredibly different answers,” Dr. Richard Lee, professor of medicine at Harvard Medical School (Boston, MA, USA), and a leading specialist on stem cell therapy, reported in the March 2013 issue of Harvard Women’s Health Watch. “The field is young. Some studies show only modest or no improvement in heart function, but others have shown dramatically improved function. We’re waiting to see if other doctors can also achieve really good results in other patients.”

New research is generating contrary findings in part, because researchers use diverse approaches to harvest and use stem cells. Some are gathered from the bone marrow of donors, others from the recipient’s own heart. It is not evident which approach works optimally. “Some investigators think this is just a few years away,” concluded Dr. Lee. “And then there are others who feel that there is much more work to be done.”

Presently, stem cell therapy is available only to individuals who participate in a research trial.

Related Links:

Cedars-Sinai Heart Institute
Harvard Medical School



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Clinical Chemistry System
P780
Gold Member
Automatic Hematology Analyzer
DH-800 Series

Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more