We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mass-Producing Natural Cancer-Killing Cells for Treatment Options for Patients

By LabMedica International staff writers
Posted on 27 Mar 2013
Scientists reported that they are in the process of generating natural cancer-killing cells in the laboratory in a quantity that could soon make them feasible for treating patients.

Even though the production of human natural killer (NK) cells in the lab from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) has become routine, it has been on a limited scale. But a new study’s findings demonstrate how to increase the number of resulting cells while in addition decreasing the amount of work and time involved in generating them. “NK cells show promise for cancer therapy,” said Dan Kaufman, MD, PhD, of the Stem Cell Institute, University of Minnesota (UM; Minneapolis; USA). “They are part of the innate immune system and exhibit potent antitumor activity without the need for donor matching and prior treatment. Moreover, the derivation of NK cells from pluripotent stem cells could provide an unlimited source of lymphocytes for ‘off-the-shelf’ therapy.”

Dr. Kaufman was the lead investigator of the study that included colleagues from UM as well as from the Integrated Center of Cellular Therapy and Regenerative Medicine, St. Anne’s University Hospital Brno (Brno, Czech Republic); and the University of Texas (Houston, USA). The study’s findings were published March 20, 2013, in the journal STEM CELLS Translational Medicine.

“Human NK cells have been used to treat patients with refractory malignancies, but a major hindrance to expanded use has been the inefficiency of production,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine (Winston-Salem, NC, USA). “The current study has identified a two-stage culture system to efficiently produce the cells in a manner more suitable to clinical translation than previous methods.”

Related Links:

Stem Cell Institute, University of Minnesota


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more