Hybrid-Core Tech Speeds Next-Generation Genomic Sequencing Analysis Pipeline
By LabMedica International staff writers Posted on 05 Mar 2013 |
A new hybrid-core system increases genomic application performance with lower ownership costs.
Convey Computer (Richardson, TX, USA) announced that the Broad Institute (Cambridge, MA, USA) has installed a Convey HC-2 system as part of their high performance compute farm. The Broad Institute) plans to use the system to speed their genomic pipelines and slash their overall cost of analysis. The Broad Institute is one of the leading biomedical and genomic research centers, generating terabases of sequence data per day.
Convey is working closely with the Broad as they incorporate the Convey system into their pipeline. “We are pleased that the Broad has selected Convey to accelerate critical portions of their next-generation sequencing analysis pipeline,” explained Dr. George Vacek, Director of Convey Computer’s Life Sciences business unit. “Broad is a leader in the adoption of new sequencing technology and in development of corresponding analysis methods. Our ongoing relationship to optimize their analysis tools will have a high impact on researchers worldwide.”
The Broad Institute purchased the Convey system to explore how the hybrid-core computer could accelerate their pipelines while reducing costs. “Although BWA is not a large part of the overall pipeline wall time, in terms of CPU dollars spent it is a very large component,” explained Tim Fennell, director of informatics for the Broad’s genomics platform. “With the Convey system, we expect to increase performance of BWA 10-fold. The Convey system will allow us to increase our efficiency and complete more analysis per dollar.” (The Burrows-Wheeler Aligner [BWA] is an efficient program that aligns comparatively short nucleotide sequences against a long reference sequence such as the human genome.)
Installation of the Convey system at the Broad was quick and easy. “Installing the Convey system was just like installing any other piece of compute hardware. It required no customization at all, fitting naturally into our existing infrastructure,” said Eric Jones, manager of research computing. “Additionally, I’m impressed with Convey’s customer support; I can quickly and easily talk to knowledgeable people.”
Convey’s hybrid-core architecture pairs classic Intel x86 microprocessors with a coprocessor comprised of FPGAs. Particular algorithms—BWA-based alignment, for example—are optimized and translated into code that is loadable onto the coprocessor at runtime. The systems help customers dramatically increase performance over industry standard servers while reducing energy costs associated with high-performance computing.
The world’s first hybrid-core computer, the Convey Computer’s system, combines the low cost and simple programming model of a commodity system with the performance of personalized hardware architecture. Using the Convey hybrid-core systems, users worldwide in industries such as life sciences, research, sophisticated analytics, and the government/defense are appreciating increased application performance and lower costs of ownership.
Related Links:
Convey Computer
Broad Institute
Convey Computer (Richardson, TX, USA) announced that the Broad Institute (Cambridge, MA, USA) has installed a Convey HC-2 system as part of their high performance compute farm. The Broad Institute) plans to use the system to speed their genomic pipelines and slash their overall cost of analysis. The Broad Institute is one of the leading biomedical and genomic research centers, generating terabases of sequence data per day.
Convey is working closely with the Broad as they incorporate the Convey system into their pipeline. “We are pleased that the Broad has selected Convey to accelerate critical portions of their next-generation sequencing analysis pipeline,” explained Dr. George Vacek, Director of Convey Computer’s Life Sciences business unit. “Broad is a leader in the adoption of new sequencing technology and in development of corresponding analysis methods. Our ongoing relationship to optimize their analysis tools will have a high impact on researchers worldwide.”
The Broad Institute purchased the Convey system to explore how the hybrid-core computer could accelerate their pipelines while reducing costs. “Although BWA is not a large part of the overall pipeline wall time, in terms of CPU dollars spent it is a very large component,” explained Tim Fennell, director of informatics for the Broad’s genomics platform. “With the Convey system, we expect to increase performance of BWA 10-fold. The Convey system will allow us to increase our efficiency and complete more analysis per dollar.” (The Burrows-Wheeler Aligner [BWA] is an efficient program that aligns comparatively short nucleotide sequences against a long reference sequence such as the human genome.)
Installation of the Convey system at the Broad was quick and easy. “Installing the Convey system was just like installing any other piece of compute hardware. It required no customization at all, fitting naturally into our existing infrastructure,” said Eric Jones, manager of research computing. “Additionally, I’m impressed with Convey’s customer support; I can quickly and easily talk to knowledgeable people.”
Convey’s hybrid-core architecture pairs classic Intel x86 microprocessors with a coprocessor comprised of FPGAs. Particular algorithms—BWA-based alignment, for example—are optimized and translated into code that is loadable onto the coprocessor at runtime. The systems help customers dramatically increase performance over industry standard servers while reducing energy costs associated with high-performance computing.
The world’s first hybrid-core computer, the Convey Computer’s system, combines the low cost and simple programming model of a commodity system with the performance of personalized hardware architecture. Using the Convey hybrid-core systems, users worldwide in industries such as life sciences, research, sophisticated analytics, and the government/defense are appreciating increased application performance and lower costs of ownership.
Related Links:
Convey Computer
Broad Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more
New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
Polysialic acid is a unique acidic glycan predominantly found in brain regions associated with memory and emotion, but it is also present in the bloodstream. Research has shown that blood levels of polysialic... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more