Hybrid-Core Tech Speeds Next-Generation Genomic Sequencing Analysis Pipeline
|
By LabMedica International staff writers Posted on 05 Mar 2013 |
A new hybrid-core system increases genomic application performance with lower ownership costs.
Convey Computer (Richardson, TX, USA) announced that the Broad Institute (Cambridge, MA, USA) has installed a Convey HC-2 system as part of their high performance compute farm. The Broad Institute) plans to use the system to speed their genomic pipelines and slash their overall cost of analysis. The Broad Institute is one of the leading biomedical and genomic research centers, generating terabases of sequence data per day.
Convey is working closely with the Broad as they incorporate the Convey system into their pipeline. “We are pleased that the Broad has selected Convey to accelerate critical portions of their next-generation sequencing analysis pipeline,” explained Dr. George Vacek, Director of Convey Computer’s Life Sciences business unit. “Broad is a leader in the adoption of new sequencing technology and in development of corresponding analysis methods. Our ongoing relationship to optimize their analysis tools will have a high impact on researchers worldwide.”
The Broad Institute purchased the Convey system to explore how the hybrid-core computer could accelerate their pipelines while reducing costs. “Although BWA is not a large part of the overall pipeline wall time, in terms of CPU dollars spent it is a very large component,” explained Tim Fennell, director of informatics for the Broad’s genomics platform. “With the Convey system, we expect to increase performance of BWA 10-fold. The Convey system will allow us to increase our efficiency and complete more analysis per dollar.” (The Burrows-Wheeler Aligner [BWA] is an efficient program that aligns comparatively short nucleotide sequences against a long reference sequence such as the human genome.)
Installation of the Convey system at the Broad was quick and easy. “Installing the Convey system was just like installing any other piece of compute hardware. It required no customization at all, fitting naturally into our existing infrastructure,” said Eric Jones, manager of research computing. “Additionally, I’m impressed with Convey’s customer support; I can quickly and easily talk to knowledgeable people.”
Convey’s hybrid-core architecture pairs classic Intel x86 microprocessors with a coprocessor comprised of FPGAs. Particular algorithms—BWA-based alignment, for example—are optimized and translated into code that is loadable onto the coprocessor at runtime. The systems help customers dramatically increase performance over industry standard servers while reducing energy costs associated with high-performance computing.
The world’s first hybrid-core computer, the Convey Computer’s system, combines the low cost and simple programming model of a commodity system with the performance of personalized hardware architecture. Using the Convey hybrid-core systems, users worldwide in industries such as life sciences, research, sophisticated analytics, and the government/defense are appreciating increased application performance and lower costs of ownership.
Related Links:
Convey Computer
Broad Institute
Convey Computer (Richardson, TX, USA) announced that the Broad Institute (Cambridge, MA, USA) has installed a Convey HC-2 system as part of their high performance compute farm. The Broad Institute) plans to use the system to speed their genomic pipelines and slash their overall cost of analysis. The Broad Institute is one of the leading biomedical and genomic research centers, generating terabases of sequence data per day.
Convey is working closely with the Broad as they incorporate the Convey system into their pipeline. “We are pleased that the Broad has selected Convey to accelerate critical portions of their next-generation sequencing analysis pipeline,” explained Dr. George Vacek, Director of Convey Computer’s Life Sciences business unit. “Broad is a leader in the adoption of new sequencing technology and in development of corresponding analysis methods. Our ongoing relationship to optimize their analysis tools will have a high impact on researchers worldwide.”
The Broad Institute purchased the Convey system to explore how the hybrid-core computer could accelerate their pipelines while reducing costs. “Although BWA is not a large part of the overall pipeline wall time, in terms of CPU dollars spent it is a very large component,” explained Tim Fennell, director of informatics for the Broad’s genomics platform. “With the Convey system, we expect to increase performance of BWA 10-fold. The Convey system will allow us to increase our efficiency and complete more analysis per dollar.” (The Burrows-Wheeler Aligner [BWA] is an efficient program that aligns comparatively short nucleotide sequences against a long reference sequence such as the human genome.)
Installation of the Convey system at the Broad was quick and easy. “Installing the Convey system was just like installing any other piece of compute hardware. It required no customization at all, fitting naturally into our existing infrastructure,” said Eric Jones, manager of research computing. “Additionally, I’m impressed with Convey’s customer support; I can quickly and easily talk to knowledgeable people.”
Convey’s hybrid-core architecture pairs classic Intel x86 microprocessors with a coprocessor comprised of FPGAs. Particular algorithms—BWA-based alignment, for example—are optimized and translated into code that is loadable onto the coprocessor at runtime. The systems help customers dramatically increase performance over industry standard servers while reducing energy costs associated with high-performance computing.
The world’s first hybrid-core computer, the Convey Computer’s system, combines the low cost and simple programming model of a commodity system with the performance of personalized hardware architecture. Using the Convey hybrid-core systems, users worldwide in industries such as life sciences, research, sophisticated analytics, and the government/defense are appreciating increased application performance and lower costs of ownership.
Related Links:
Convey Computer
Broad Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
Pre-eclampsia remains one of the most dangerous pregnancy complications, yet its cause is difficult to pinpoint because the disorder develops silently and is challenging to study. A major obstacle has... Read more
Blood Test Could Assess Concussion Severity in Teenagers with TBI
Diagnosing and monitoring concussion in adolescents is challenging because symptoms can persist for weeks and vary widely between patients. The need for objective tools is especially urgent for teen girls,... Read more
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








