LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanotechnology Detects Antibodies in Blood

By LabMedica International staff writers
Posted on 15 Oct 2012
A rapid and easy-to-use diagnostic test consists of a nanometer-scale DNA "switch" that can quickly detect antibodies specific to a wide range of diseases.

The test may aid efforts to build point-of-care devices for quick medical diagnosis of sexually transmitted diseases (STDs), allergies, autoimmune diseases, and a number of other diseases.

Bioengineers at University of California (Santa Barbara, CA, USA) and the University of Rome Tor Vergata (Italy) developed a versatile electrochemical switch that supports the rapid, quantitative detection of antibodies directly in whole blood at clinically relevant low-nanomolar concentrations. The design of the switch takes advantage of the occurrence of two antigen-binding sites on each antibody, which are separated by about 12 nm. Specifically, they used DNA to engineer a switch that brings into the close proximity of less than 4 nm two copies of an antigen, epitope, or hapten via the formation of a stem-loop structure.

The team built synthetic molecular switches that signal their state via a change in electric current. This change in current can be measured using inexpensive electronics similar to those in the home glucose-test meter used by diabetics to check their blood sugar. The scientists used these nanoswitches to detect anti-HIV antibodies directly in whole blood in less than five minutes.

This new class of electrochemical switches is versatile, as they support the use of both small-molecule haptens and polypeptide epitopes for antibody detection. The investigators believe that they can likely be engineered to support the detection of even nonantibody targets as long as the targets present two or more recognition sites spaced far enough apart to induce the required stem opening.

Francesco Ricci, PhD, a professor at University of Rome Tor Vergata and cofirst author of the paper, said "A great advantage of these electrochemical nanoswitches is that their sensing principle can be generalized to many different targets, allowing us to build inexpensive devices that could detect dozens of disease markers in less than five minutes in the doctor's office or even at home." The study was published on August 22, 2012, in the Journal of the American Chemical Society.

Related Links:
University of California
University of Rome


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more