LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sensor Array System Detects Cancer Types

By LabMedica International staff writers
Posted on 01 Oct 2012
Print article
Image: Gold nanoparticles (at left) with green fluorescent protein (GFP) “smell” different cancer types in much the same way our noses identify and remember different odors. At right, the distinct protein levels in a cancer interact with the particle to generate patterns used to identify cancer type (Photo courtesy of the University of Massachusetts).
Image: Gold nanoparticles (at left) with green fluorescent protein (GFP) “smell” different cancer types in much the same way our noses identify and remember different odors. At right, the distinct protein levels in a cancer interact with the particle to generate patterns used to identify cancer type (Photo courtesy of the University of Massachusetts).
A rapid, sensitive way to detect microscopic levels of many different metastatic cell types in living tissue has been developed.

A sensor array of gold nanoparticle sensors plus green fluorescent protein (GFP) that activates in response to patterns in the proteins found in cancer cells within minutes, assigning a unique signature to each cancer.

Chemists at the University of Massachusetts Amherst (MA, USA) used a preclinical non-small-cell lung cancer-metastasis model in mice to develop the system. The new work builds an earlier development of a "chemical nose" array of nanoparticles and polymers able to differentiate between normal cells and cancerous ones.

For this work, the scientists took healthy tissue and mouse tumor samples and trained the nanoparticle-GFP sensor array to recognize them and the GFP to fluoresce in the presence of metastatic tissue. Metastases are differentiated from healthy tissue in a matter of minutes, providing a rapid and very general means of detecting and identifying cancer and potentially other diseases using minimally invasive microbiopsies.

In addition to the high sensitivity, the sensor is able to differentiate between low (parental) and high (bone, adrenal, and ovary) metastases, as well as between site-specific cells such as breast, liver, lung and prostate cancers. Until now, the standard method for precisely identifying cancer cells used a biological receptor approach, a protein binding to a cancer cell wall. Its major drawback is that one must know the appropriate receptor beforehand. Array-based sensing approaches discriminate between analytes based on their overall signatures and are emerging as a potential alternative for point-of-care diagnosis.

The authors concluded that the sensor created a distinct fingerprint pattern for the normal and metastatic tumor tissues. Moreover, this array-based approach is unbiased, precluding the requirement of a priori knowledge of the disease biomarkers. Taken together, these studies demonstrate the utility of this sensor for creating fingerprints of cells and tissues in different states and present a general platform for rapid screening amenable to fine needle-aspiration samples. Overall, the authors concluded that this array-based sensing strategy presents the prospect of unbiased phenotype screening of tissue states arising from genetic variations and differentiation state. The study was published on August 26, 2012, in the journal American Chemical Society Nano (ACS Nano).

Related Links:
University of Massachusetts Amherst



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.