Photochemical Internalization Cancer Treatment with Minor Side Effects Closer to Reality
|
By LabMedica International staff writers Posted on 24 Jan 2012 |

Image: Light-sensitive molecules (orange) before and after photochemical internalization (PCI) treatment. At left, the molecules are trapped within membranes inside the cancer cell. At right, the molecules have been released and can spread--along with the cytotoxic drugs--throughout the entire cancer cell (Photo courtesy of Pål K. Selbo/PCI Biotech).
Side effects are currently the biggest drawback with any cancer treatment. A Norwegian biotech company is getting closer to creating a treatment that destroys only cancer cells, leaving other cells unaffected.
It is not hard to find a drug that destroys cancer cells. The problem lies in the fact that a drug’s active compounds kill indiscriminately, not only diseased cells die but also other cells in the body. This is why the side effects associated with conventional cancer treatment are frequently so severe.
The hope of any cancer researcher is to develop a drug that works only against a cancerous tumor--without adversely affecting the rest of the body. This objective can be attained in two ways: one is to produce targeted drugs that affect only the cancer cells; the other is to design smarter way of delivering a drug to its target without affecting other parts of the body.
A biotech company, PCI Biotech Holding, ASA (Lysaker, Norway), has been focusing on the latter approach since 2000. Researchers working on the project Fotokjemisk internalisering for Cellegiftterapi av Kreft (Photochemical Internalization of Chemotherapy) have steadily been getting closer to a solution. Headed by chief scientific officer Dr. Anders Høgset, the project has received funding under the Program for User-driven Research-based Innovation (BIA) at the Research Council of Norway.
The technology is based on light and is called photochemical internalization (PCI). It was discovered in 1994 at the Norwegian Radium Hospital in Oslo (now part of Oslo University Hospital). PCI Biotech uses the technology to direct a red laser to the area of the body where the drug is to have its effect. The light significantly enhances drug delivery to specific locations inside the diseased cells.
“But in order to achieve the desired effect from the light, we need to give the patient a photosensitizing compound,” explained Dr. Høgset. “This is a chemical substance increasing cells’ sensitivity to light. We have created and patented a molecule [Amphinex] that we inject into a patient and let circulate for a few days. Then we give the patient the desired drug. After a short while, we shine the laser on the tumor where both Amphinex and the medication are now present. When light is applied, Amphinex triggers processes within the cancer cells, substantially enhancing the effect of the drug.”
The challenge of effectively transporting molecules to a targeted area inside a cell has long stumped cancer researchers. For pharmaceutical companies, it has created a logjam, slowing down further development of a number of molecules with great therapeutic possibilities.
Patients have often had to receive higher doses of a drug than what would otherwise be necessary had there existed a way to target drug delivery to the right location inside a cell. Because of these higher doses, the side effects patients experience are commensurately more severe. “Now we have finally succeeded in finding a way to deliver cancer medications inside the malignant cells, destroying them effectively,” noted Dr. Høgset.
These cancer-killing medications pass through cancer cell membranes much more easily, which considerably increases their accuracy. It follows that doses can be reduced substantially with side effects becoming correspondingly less severe. “In the laboratory, we have managed to enhance the effect of some cytotoxic drugs by a full 50 times. We did so by administering Amphinex and directing light to the cancer cell,” explained Dr. Høgset.
PCI Biotech, together with University College London Hospital, began performing research on human subjects two years ago. “All patients involved in the study experienced a considerable effect from the light treatment and, in most cases, the treated tumors disappeared altogether. No serious side effects were observed,” said Dr. Høgset.
PCI Biotech is now going to follow-up with additional clinical research. Up to the present, PCI Biotech has focused on localized cancer treatment, for example, for mouth cancer, breast cancer, and facial skin cancer. Many cancer patients stand to benefit greatly from localized treatment, but a great number also require treatment that can attack cancer that has metastasized to other areas of the body.
As part of a future project, PCI Biotech intends to extend its technology to treatment of metastatic cancer. The project will evaluate whether the technology can activate a person’s immune system, enabling it to attack cancer cells in more than one part of the body.
Related Links:
PCI Biotech Holding
It is not hard to find a drug that destroys cancer cells. The problem lies in the fact that a drug’s active compounds kill indiscriminately, not only diseased cells die but also other cells in the body. This is why the side effects associated with conventional cancer treatment are frequently so severe.
The hope of any cancer researcher is to develop a drug that works only against a cancerous tumor--without adversely affecting the rest of the body. This objective can be attained in two ways: one is to produce targeted drugs that affect only the cancer cells; the other is to design smarter way of delivering a drug to its target without affecting other parts of the body.
A biotech company, PCI Biotech Holding, ASA (Lysaker, Norway), has been focusing on the latter approach since 2000. Researchers working on the project Fotokjemisk internalisering for Cellegiftterapi av Kreft (Photochemical Internalization of Chemotherapy) have steadily been getting closer to a solution. Headed by chief scientific officer Dr. Anders Høgset, the project has received funding under the Program for User-driven Research-based Innovation (BIA) at the Research Council of Norway.
The technology is based on light and is called photochemical internalization (PCI). It was discovered in 1994 at the Norwegian Radium Hospital in Oslo (now part of Oslo University Hospital). PCI Biotech uses the technology to direct a red laser to the area of the body where the drug is to have its effect. The light significantly enhances drug delivery to specific locations inside the diseased cells.
“But in order to achieve the desired effect from the light, we need to give the patient a photosensitizing compound,” explained Dr. Høgset. “This is a chemical substance increasing cells’ sensitivity to light. We have created and patented a molecule [Amphinex] that we inject into a patient and let circulate for a few days. Then we give the patient the desired drug. After a short while, we shine the laser on the tumor where both Amphinex and the medication are now present. When light is applied, Amphinex triggers processes within the cancer cells, substantially enhancing the effect of the drug.”
The challenge of effectively transporting molecules to a targeted area inside a cell has long stumped cancer researchers. For pharmaceutical companies, it has created a logjam, slowing down further development of a number of molecules with great therapeutic possibilities.
Patients have often had to receive higher doses of a drug than what would otherwise be necessary had there existed a way to target drug delivery to the right location inside a cell. Because of these higher doses, the side effects patients experience are commensurately more severe. “Now we have finally succeeded in finding a way to deliver cancer medications inside the malignant cells, destroying them effectively,” noted Dr. Høgset.
These cancer-killing medications pass through cancer cell membranes much more easily, which considerably increases their accuracy. It follows that doses can be reduced substantially with side effects becoming correspondingly less severe. “In the laboratory, we have managed to enhance the effect of some cytotoxic drugs by a full 50 times. We did so by administering Amphinex and directing light to the cancer cell,” explained Dr. Høgset.
PCI Biotech, together with University College London Hospital, began performing research on human subjects two years ago. “All patients involved in the study experienced a considerable effect from the light treatment and, in most cases, the treated tumors disappeared altogether. No serious side effects were observed,” said Dr. Høgset.
PCI Biotech is now going to follow-up with additional clinical research. Up to the present, PCI Biotech has focused on localized cancer treatment, for example, for mouth cancer, breast cancer, and facial skin cancer. Many cancer patients stand to benefit greatly from localized treatment, but a great number also require treatment that can attack cancer that has metastasized to other areas of the body.
As part of a future project, PCI Biotech intends to extend its technology to treatment of metastatic cancer. The project will evaluate whether the technology can activate a person’s immune system, enabling it to attack cancer cells in more than one part of the body.
Related Links:
PCI Biotech Holding
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







