Compound Discovered in Florida Keys Shows Potential as Colon Cancer Treatment
|
By LabMedica International staff writers Posted on 01 Nov 2010 |
A chemical compound made from a type of bacteria discovered in the Florida Keys (USA) by a pharmacy researcher has shown effectiveness in fighting colon cancer in preclinical research.
Writing online October 2010 in the Journal of Pharmacology and Experimental Therapeutics, scientists from the University of Florida (UF; Gainesville, USA) reported that the compound--known as largazole because it was first discovered near Key Largo--suppresses human cancer cell growth in cultures and rodent models by attacking a class of enzymes involved in the packaging and structure of DNA.
More research is needed, but scientists hope that the finding will lead to new treatments for the about 50,000 people struck with colorectal cancer each year in the United States. Researchers are enthusiastic because in addition to having the marine bacteria as a natural source of the chemical, they have been able to produce synthetically the active chemical compound extracted from the bacteria.
"It is challenging to develop natural marine products into drug therapies due to what is termed the ‘the supply problem,'” said Dr. Hendrik Luesch, an associate professor of medicinal chemistry in the UF College of Pharmacy. "We have solved the supply problem for largazole because it has a relatively simple structure, which has made it easy to reproduce in the lab.”
The Luesch lab discovered largazole while studying samples of bacteria from the Florida Keys, publishing the finding in 2008. Known as cyanobacteria, the microbes have evolved to fend off predators or deal with harsh conditions in a marine environment, employing toxins to aid their own survival. The toxins are the compounds chemists such as Dr. Luesch desire to isolate and understand in a quest to create drugs that similarly fend off invading cancers in the body.
Since the discovery, Dr. Luesch's lab determined the compound inhibits enzymes known as histone deacetylases (HDACs), which are linked to many diseases and are increasingly viewed as promising for cancer therapy. Dr. Jiyong Hong, an assistant professor of chemistry at Duke University (Durham, NC, USA), teamed with the UF researchers to chemically reproduce the compound for additional preclinical testing, which indicates it is a potent inhibitor of cancer cells that has the right characteristics to reach its intended target without the toxic side effects of many cancer drugs.
"Knowing HDAC is the target that makes largazole effective means we can predict good drug properties because there are already two anticancer products on the market that work this way,” said Dr. Luesch, who is a member of the UF Shands Cancer Center.
Three important features make this marine compound more promising than other natural products as an effective cancer-fighting drug, Dr. Luesch noted that availability of supply, knowing its mode of action, and the fact that its cellular target is already a known anticancer target known to result in the necessary selectivity for cancer cells over normal cells.
Dr. Luesch presented the study's findings September 9, 2010, at the Marine Drug Discovery Symposium in Pohang, South Korea, and later in Mid-October at the Marine Natural Products Symposium in Phuket, Thailand. The research is planned for publication in the November 2010 issue of the Journal of Pharmacology and Experimental Therapeutics.
Related Links:
University of Florida
Duke University
Writing online October 2010 in the Journal of Pharmacology and Experimental Therapeutics, scientists from the University of Florida (UF; Gainesville, USA) reported that the compound--known as largazole because it was first discovered near Key Largo--suppresses human cancer cell growth in cultures and rodent models by attacking a class of enzymes involved in the packaging and structure of DNA.
More research is needed, but scientists hope that the finding will lead to new treatments for the about 50,000 people struck with colorectal cancer each year in the United States. Researchers are enthusiastic because in addition to having the marine bacteria as a natural source of the chemical, they have been able to produce synthetically the active chemical compound extracted from the bacteria.
"It is challenging to develop natural marine products into drug therapies due to what is termed the ‘the supply problem,'” said Dr. Hendrik Luesch, an associate professor of medicinal chemistry in the UF College of Pharmacy. "We have solved the supply problem for largazole because it has a relatively simple structure, which has made it easy to reproduce in the lab.”
The Luesch lab discovered largazole while studying samples of bacteria from the Florida Keys, publishing the finding in 2008. Known as cyanobacteria, the microbes have evolved to fend off predators or deal with harsh conditions in a marine environment, employing toxins to aid their own survival. The toxins are the compounds chemists such as Dr. Luesch desire to isolate and understand in a quest to create drugs that similarly fend off invading cancers in the body.
Since the discovery, Dr. Luesch's lab determined the compound inhibits enzymes known as histone deacetylases (HDACs), which are linked to many diseases and are increasingly viewed as promising for cancer therapy. Dr. Jiyong Hong, an assistant professor of chemistry at Duke University (Durham, NC, USA), teamed with the UF researchers to chemically reproduce the compound for additional preclinical testing, which indicates it is a potent inhibitor of cancer cells that has the right characteristics to reach its intended target without the toxic side effects of many cancer drugs.
"Knowing HDAC is the target that makes largazole effective means we can predict good drug properties because there are already two anticancer products on the market that work this way,” said Dr. Luesch, who is a member of the UF Shands Cancer Center.
Three important features make this marine compound more promising than other natural products as an effective cancer-fighting drug, Dr. Luesch noted that availability of supply, knowing its mode of action, and the fact that its cellular target is already a known anticancer target known to result in the necessary selectivity for cancer cells over normal cells.
Dr. Luesch presented the study's findings September 9, 2010, at the Marine Drug Discovery Symposium in Pohang, South Korea, and later in Mid-October at the Marine Natural Products Symposium in Phuket, Thailand. The research is planned for publication in the November 2010 issue of the Journal of Pharmacology and Experimental Therapeutics.
Related Links:
University of Florida
Duke University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Urine Test Could Reveal Real Age and Life Span
Chronological age does not always reflect how quickly the body is aging, as biological age is shaped by genetics, stress, sleep, nutrition, and lifestyle factors such as smoking. A higher biological age... Read more
Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
Prostate cancer is one of the most commonly diagnosed cancers in men and a leading cause of cancer-related death, particularly in the United States. African American men face a disproportionately higher... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







