Loss of Critical Enzyme Prevents Infection by Mutant Leishmania Parasite
|
By LabMedica International staff writers Posted on 27 Jul 2010 |

Image: Colored scanning electron micrograph (SEM) of several Leishmania parasitic protozoans (Photo courtesy of the Eye of Science).
A group of enzymes that are key regulators of cell growth, proliferation, and structure in eukaryotes has been cited as potential targets by drug developers seeking a cure for the parasitic disease leishmaniasis.
Leishmaniasis is a parasitic disease with cutaneous, mucocutaneous, and visceral clinical manifestations, depending on the Leishmania spp. and human host. Worldwide, there are some 350 million people at risk of contracting the disease, but current treatment options rely predominantly on outmoded pentavalent antimonials, which have the potential to cause serious systemic toxicity.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) searched genome databases and located the genes that encode three TOR (target of rapamycin) kinases in Leishmania major. In all eukaryotic organisms, these enzymes are linked to the regulation of critical cell events such as growth, proliferation, and structural maintenance.
The investigators attempted to engineer genetically L. major variants lacking the gene for one or more of the three TOR enzymes. They reported in the June 20, 2010, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) that the parasite could not survive removal of the genes for either TOR kinase-1 or TOR kinase-2. On the other hand, removal of TOR kinase-3 (while leaving the other two intact) resulted in a slower growing mutant that maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective promastigote stage. Significantly, these mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in the TOR kinase -3 mutants and it no longer accumulated polyphosphates. The mutants also showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids.
Results of this study indicate that acidocalcisomes are essential for infection and may modulate the flow of fluids across the cell membrane or provide a mechanism for coping with stress and glucose depletion.
"If we can hit any of these proteins with a drug that will inhibit them, we should be able to strike a significant blow against Leishmania,” said senior author Dr. Stephen Beverley, professor of molecular microbiology at Washington University School of Medicine. "Given the numerous inhibitors already available, I think there is a pretty good chance that we will be able to identify a compound that specifically inhibits one of Leishmania's TOR kinases.”
Related Links:
Washington University School of Medicine
Leishmaniasis is a parasitic disease with cutaneous, mucocutaneous, and visceral clinical manifestations, depending on the Leishmania spp. and human host. Worldwide, there are some 350 million people at risk of contracting the disease, but current treatment options rely predominantly on outmoded pentavalent antimonials, which have the potential to cause serious systemic toxicity.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) searched genome databases and located the genes that encode three TOR (target of rapamycin) kinases in Leishmania major. In all eukaryotic organisms, these enzymes are linked to the regulation of critical cell events such as growth, proliferation, and structural maintenance.
The investigators attempted to engineer genetically L. major variants lacking the gene for one or more of the three TOR enzymes. They reported in the June 20, 2010, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) that the parasite could not survive removal of the genes for either TOR kinase-1 or TOR kinase-2. On the other hand, removal of TOR kinase-3 (while leaving the other two intact) resulted in a slower growing mutant that maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective promastigote stage. Significantly, these mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in the TOR kinase -3 mutants and it no longer accumulated polyphosphates. The mutants also showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids.
Results of this study indicate that acidocalcisomes are essential for infection and may modulate the flow of fluids across the cell membrane or provide a mechanism for coping with stress and glucose depletion.
"If we can hit any of these proteins with a drug that will inhibit them, we should be able to strike a significant blow against Leishmania,” said senior author Dr. Stephen Beverley, professor of molecular microbiology at Washington University School of Medicine. "Given the numerous inhibitors already available, I think there is a pretty good chance that we will be able to identify a compound that specifically inhibits one of Leishmania's TOR kinases.”
Related Links:
Washington University School of Medicine
Latest Drug Discovery News
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







