We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

POC COVID-19 Test Detects and Differentiates SARS-CoV-2 Alpha Variant from Earlier Strains

By LabMedica International staff writers
Posted on 20 Apr 2022
Print article
Image: Portable, POC COVID-19 test discerns alpha variant from earlier strains (Photo courtesy of Pexels)
Image: Portable, POC COVID-19 test discerns alpha variant from earlier strains (Photo courtesy of Pexels)

A newly-developed point-of-care COVID-19 test can detect and differentiate the alpha variant of the SARS-CoV-2 virus from earlier strains in saliva samples.

The new test developed by researchers at the University of Illinois at Urbana-Champaign (Champaign, IL, USA) builds on their previous developments, which allowed samples to bypass the laboratory – first using nasopharyngeal swabs, then with saliva samples. The point-of-care amplification and testing process, called LAMP, is more efficient than PCR because it does not require expensive thermal cycling machines. According to the researchers, the assay does not need RNA extraction and purification steps, similar to the Illinois saliva test.

The updated process takes advantage of a genetic phenomenon called S-gene target failure – which is present in the alpha variant but not in the SARS-CoV-2 virus early strains – to differentiate between the two alpha variants, the researchers said. During the new testing process, specially selected genetic primers are placed onto additively manufactured cartridges and dried before adding the patient samples. The chosen primers are set against the S-gene and are specific for detecting the S-gene target failure against 69–70 deletion in the alpha variant.

Their study confirmed the device’s effectiveness by testing 38 clinical saliva samples, including 20 samples positive for alpha variant. The researchers would like to refine their method to test up to five different viruses, viral strains and variants in a single test, compatible with nasal swab and saliva mediums.

“Our study shows that it is possible to test for variants of the same coronavirus strain in a single point-of-care test that takes 30 minutes using a portable handheld device,” said Rashid Bashir, a professor of bioengineering and the dean of the Grainger College of Engineering at Illinois, who co-led the study. “The new test is scalable to suit future pandemics, COVID-19 or otherwise, and could be used at home or other settings.”

“The new omicron variant also exhibits S-gene target failure and could be tested for by adapting the approach developed in this study,” added bioengineering professor Enrique Valera.

Related Links:
University of Illinois at Urbana-Champaign 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more