We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Radiolabeled Antibody Saliva Test for Detecting SARS-CoV-2 Delivers Rapid, Accurate and High Volume Results

By LabMedica International staff writers
Posted on 28 Dec 2021
Print article
Illustration
Illustration

Scientists are using radiolabeled antibodies to develop an accurate, inexpensive, portable, high volume, rapid and non-invasive saliva-based testing kit for the detection of SARS CoV-2.

International Isotopes Inc. (INIS; Idaho Falls, ID, USA) has entered into an exclusive licensing agreement with Memorial Sloan Kettering Cancer Center (MSK; Manhattan, NY, USA) for the commercialization of a radiolabled antibody test for detecting SARS CoV-2. In early 2021, INIS and MSK entered into a sponsored research agreement to further advance and develop research being conducted at MSK using radiolabeled antibodies to develop an accurate, inexpensive, portable, high volume, rapid and non-invasive saliva-based testing kit to detect SARS CoV-2.

The sponsored research effort was successful and after a series of in vitro assays to define the sensitivity, specificity, and automation of the testing kit, the testing procedure was further validated at John Hopkins University using live SARS-CoV-2 virions diluted at different plaque-forming unit (PFU) concentrations. The new testing procedure successfully detected SARS CoV-2 virions at a concentration as low as 19700 PFU/mL (corresponding to 2.04 X 108 copies/mL) and as high as 1970000 PFU/mL, confirming the efficacy of the new testing procedure. While the initial research focused on SARS-CoV-2 detection, INIS plans to support additional research and development to apply the new testing method to other viruses.

Briefly, a patient's saliva is diluted with a radiolabeled virus targeted antibody to form a solution. The solution is then placed in a centrifuge, and by using a filter, target bound antibody is size separated from unbound antibody. Detection of the radiochemical in the target bound antibody sample indicates virions. A very large number of samples could be placed into the centrifuge simultaneously, supporting efficient high-volume testing. In terms of accuracy, using an assay the radiolabeled antibody shows a normalized target binding fraction percentage of 1.73 at 2.5 nanograms (ng), confirming both the affinity of the radiolabeled antibody to bind to the Spike S1 on the virus surface and detection of Spike S1 at levels as low as 2.5 ng. The test requires a very small volume of approximately 1 ml of saliva. High volume sample analysis takes approximately 30 minutes and does not require a sterile environment or expensive equipment such that the new testing technology can be deployed to countries and locations with limited resources.

"We are pleased with the excellent results we have seen to date with this new methodology of viral detection and testing. The prospect of developing a quick, inexpensive, accurate, sensitive, non-invasive, saliva-based test for SARS CoV-2, its variants, and any future SARS type virus, is exciting," said Steve Laflin, CEO of INIS. "We are eager to begin testing on other viruses since the targeting capability and affinity of the radiolabeled antibody to bind to the Spike on the virus surface should be applicable to other viruses such as influenza or viral cancers. We are currently evaluating the cost benefit of pursuing FDA Emergency Use Authorization for COVID detection given the large number of tests currently on the market. We will keep shareholders appraised as the commercialization plan matures."

Related Links:
International Isotopes Inc.
Memorial Sloan Kettering Cancer Center 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more