We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Compact CRISPR System Enables Portable COVID-19 Testing

By LabMedica International staff writers
Posted on 30 Nov 2021
Print article
Illustration
Illustration

A new form of CRISPR technology that takes advantage of a compact RNA-editing protein could lead to improved diagnostic tests for COVID-19.

The platform, developed by bioengineers at King Abdullah University of Science and Technology (KAUST; Makkah, Saudi Arabia), relies on a miniature form of the Cas13 protein that some microbes use to defend themselves from viruses. This RNA-cutting enzyme can be designed to cleave any target sequence, including parts of the genome from SARS-CoV-2, the novel coronavirus responsible for the COVID-19 pandemic.

By pairing the Cas13 system with a simple nucleic acid amplification method, a handheld optical reader and a smartphone, the researchers created a low-cost, point-of-care test that could accurately diagnose COVID-19 from throat and nose swab samples taken from patients. The approach proved reliable and accurate with a fast turnaround time, from clinical sampling to a diagnostic result in just a few hours. A COVID-19 test represents just one potential application of the technology, and other diagnostic or therapeutic uses could soon follow, according to the researchers.

The miniature Cas13 system may also be useful as an antiviral therapeutic. The compact nature of the new Cas13 protein makes it easier to package the gene-editing machinery into a viral vector, the standard method for transferring CRISPR components into human cells. Once inside cells, the system could be used therapeutically to alter the expression of disease-associated genes or to destroy pathogens such as the influenza virus.

What’s more, the small size of this novel protein allows for simple protein engineering, according to the researchers. And with further molecular tweaks, the KAUST team aims to expand the toolkit of potential Cas13-related applications. The researchers have filed a patent application connected to their CRISPR-Cas13 system. To refine their diagnostic method, they have also continued their search for novel Cas13 proteins.

“Our modality demonstrates several key features, including simplicity, specificity, sensitivity and portability,” said bioengineer Magdy Mahfouz who developed the platform. “This work demonstrates that bacterial defence systems have untapped potential for diverse synthetic biology applications.”

“We aim to develop next-generation sensors that can be applied for the detection of nucleic acids as well as other molecules, such as environmental molecules,” said Ahmed Mahas, a Ph.D. student in Mahfouz’s lab.

Related Links:
KAUST 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more