We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidics-Based POC Diagnostic Devices for COVID-19 More Accurate than Lateral Flow Assays, Finds Frost & Sullivan

By LabMedica International staff writers
Posted on 27 May 2021
Print article
Illustration
Illustration
With the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based point-of-care (POC) diagnostic devices can provide higher accuracy as compared to conventional lateral flow assays.

These are the latest findings of a recent analysis by Frost & Sullivan (Santa Clara, CA, USA). The analysis found that the scientific community has made tremendous progress in making microfluidics more autonomous with the integration of new powering mechanisms and sensor technologies, which can enable at-home or self-test devices. New materials with new capabilities, along with advanced fabrication and manufacturing technologies, are entering the space, leading to more integrated, capable, and affordable microfluidic-based POC devices. Additionally, with the COVID-19 outbreak rapidly decentralizing healthcare diagnostics, the use of microfluidics-based POC diagnostic devices can provide higher accuracy compared to conventional lateral flow assays.

Frost & Sullivan's analysis suggests that key companies and investors need to focus on the various growth opportunities to optimize the capabilities of microfluidic and nanofluidic technologies. Companies can exploit the technological advances in integrated sensors and self-powered microfluidic devices to build autonomous microfluidic systems for at-home or self-testing diagnostic devices. POC diagnostic companies can adopt 3D printing to develop and launch new products using the 3D manipulation of fluids and surfaces. Additionally, real-time health assessments are growing in importance because they enable personalized medicine, which is a current healthcare trend. Therefore, Frost & Sullivan's analysis recommends exploring flexible microfluidics technology to develop new wearable sensors. IoT-based and connected diagnostic platforms such as wearable sensors are the future of POC diagnostics. With telemedicine growing in demand due to the COVID-19 pandemic, it is essential to connect POC diagnostic devices to the internet, according to the analysis.

"The high cost of the current microfluidic cartridge readers and difficulty in fabricating complex microfluidic devices demand the adoption of disruptive sensor and fabrication technologies to develop more autonomous and cost-effective devices. Further, new materials and fabrication technologies are already being explored for the low-cost, mass production of devices. As a result, POC diagnosis is expected to be more autonomous, enabling at-home tests in three to five years," said Dr. Sneha Maria Mariawilliam, TechVision Senior Research Analyst at Frost & Sullivan. "The future of POC diagnosis includes a non-invasive or minimally invasive and self-powered epidermal microfluidic device, which can draw and use very small samples for multiplexed analysis of analytes and is integrated with information technologies."

"As healthcare is moving toward patient-centered care and personalization, investing in and developing technologies such as epidermal microfluidics, artificial intelligence (AI), and Internet of Things (IoT) will enable companies to be frontrunners in the industry. Keeping track of and investing in technological advancements in materials, fabrication, and sensors to build self-powered and autonomous POC devices is essential for designing and developing more integrated and cost-effective solutions, and also penetrating new POC settings such as self-testing and home care," added Mariawilliam.

Related Links:
Frost & Sullivan

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more