We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Antibody Tests Reveal Complexity of Immune Response to COVID-19

By LabMedica International staff writers
Posted on 11 Feb 2021
Print article
Illustration
Illustration
Researchers have developed two assays that reveal the ability of antibodies to target SARS-CoV-2, particularly the spike protein essential for viral entry into cells, may help determine disease susceptibility and progression in patients.

The interaction of SARS-CoV-2, the novel coronavirus causing the global COVID-19 pandemic, and the human immune system is the focus of intensive research at The Jackson Laboratory (Bar Harbor, ME USA), leading to the development of two assays. The first one is a highly sensitive and specific antibody test to determine the magnitude of total and different types of antibodies against the virus surface (Spike) and nuclear (nucleocapsid) proteins, while the second determines how well anti-SARS-CoV-2 antibodies are able to neutralize binding with ACE-2, the human receptor for the virus. In the latter assay, the team used a non-infectious pseudo-virus with the SARS-CoV-2 spike protein on the external membrane, meaning the assay does not require a BSL-3-level biosecurity facility yet detects the presence of neutralizing antibodies with extremely high sensitivity and specificity.

In their study, the researchers have shown that the assay is able to detect neutralizing antibody in patient plasma even at high dilutions, up to a 100 thousand-fold. Working with samples from 115 subjects with confirmed SARS-Cov-2 infection as well as healthy controls (56 subjects from year-old frozen samples to ensure non-infection), the team was able to determine accurate antibody levels in every patient. The assay is also sufficiently sensitive to distinguish background levels of antibody in control samples which may have been from anti-SARS-CoV-2 antibodies in patient plasma. In addition, the antibody assay provides the ability to identify antibody isotopes and assess the ratio of IgA, IgG and IgM present in each sample.

In the analysis of the patient antibody levels and neutralization, the team had several key findings. First, samples from patients with severe disease - in the ICU or deceased - had almost 100-fold higher neutralizing antibody levels than those with cases mild enough not to require hospitalization. Why, then, did they get so sick? Could extremely high levels of antibody even be harmful? And how would that influence the use of convalescent plasma as a therapy in severely ill patients who already have high antibody levels? Second, most convalescent plasma samples obtained to treat severe patients had much lower antibody levels, suggesting plasma therapy of hospitalized patients would not benefit them. Indeed, recent findings, including those using synthetic antibodies, strongly support this result. Third, there was big difference - almost a thousand-fold - in the level of neutralizing capacity of antibodies among different subjects.

The results suggest that some individuals with low neutralizing antibodies may be protected for a shorter period of time than others, an important finding given the recent emergence of antibody-evading mutant viruses in South Africa and Brazil. Interestingly, some of patient plasma was also able to effectively neutralize the original SARS virus, and there was no particular correlation with the levels of neutralization with SARS-Cov-2. This could be due to the fact that these two viruses have similar Spike surface protein structures and both use ACE2 as a receptor to enter into cells. It remains to be determined whether antibodies that can block both viruses can be more effective in neutralizing SARS-Cov-2.

The researchers will continue to use these assays to follow some subjects six months to a year post-infection, in both adults and children as well as post-vaccination. These studies will be critical for understanding the precise relationship between antibody levels and protection from reinfection, as well as protection acquired through vaccination. They also suggest the use of therapies that target excessive antibodies generated during the severe disease-causing immune pathology.

Related Links:
The Jackson Laboratory

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more