We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Lab Testing Procedure Specifically Identifies SARS-CoV-2 Neutralizing Antibodies

By LabMedica International staff writers
Posted on 20 Oct 2020
Print article
Image: Cong Zeng and Jack Evans were first authors of a paper describing a new assay that detects neutralizing antibodies against SARS-CoV-2 (Photo courtesy of Ohio State News)
Image: Cong Zeng and Jack Evans were first authors of a paper describing a new assay that detects neutralizing antibodies against SARS-CoV-2 (Photo courtesy of Ohio State News)
Scientists have developed a new lab testing procedure for the detection of antibodies against SARS-CoV-2 that gives results more quickly than existing assays and specifically identifies so-called “neutralizing” antibodies - those that protect by blocking infection of cells.

Knowing that a person has developed antibodies against the SARS-CoV-2 virus after recovering from COVID-19 doesn’t tell everything about his/her immunity. The levels and even types of antibodies can differ among patients, and those differences can influence whether a person is protected against being reinfected. Scientists at The Ohio State University (Columbus, OH, USA) developed what is called a “pseudotype” virus neutralizing antibody assay, in which an HIV vector and core is coated with the SARS-CoV-2 spike protein to detect antibodies against the coronavirus. The team applied a new approach by selecting a different form of light-producing enzyme that can be detected conveniently in culture media containing the virus-infected cells. That choice saved several steps, and time, in the detection process without losing accuracy and sensitivity to the target virus.

The team analyzed 221 patient blood samples to validate the effectiveness of the assay and verify that the detection test could be scaled up for widespread screening. The results showed that, in general, hospitalized patients - and ICU patients in particular - had the highest concentrations, or titers, of neutralizing antibodies in their systems. However, over 14% of those who had been hospitalized had no or very low levels of antibodies. Among the health care professionals, 40% were negative for neutralizing antibodies and 36% had low concentrations. And more than half of the convalescent blood donors had concentrations of antibodies that were too low to qualify them as donors for treatment of COVID-19 patients. The assay detected no SARS-CoV-2 antibodies in the samples from people who had been sick with other types of respiratory diseases. The test accuracy was further validated by verifying in a lab setting that the antibodies detected in the COVID-19 patient blood samples did in fact neutralize the authentic SARS-CoV-2 virus. It won’t be long before the assay is put to a larger test.

“With many assays currently in use, we can detect antibodies, but that doesn’t tell us if they’re neutralizing antibodies. We only know the level of antibodies someone has,” said Shan-Lu Liu, professor in the Ohio State College of Veterinary Medicine’s Department of Veterinary Biosciences and the senior author of a new journal article describing the assay. “Some antibodies might be protective, some might not be protective, and some might even enhance infection – we know with this type of coronavirus and some other viruses, some antibodies can even do harm,” he said. “Our assay examines whether antibodies are potentially protective, which means they prevent a patient from reinfection and block viral replication. That’s the outcome of infection that we want people to have.”

Related Links:
The Ohio State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more