We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Develop Chip for Biomolecule Detection to Aid COVID-19 Testing

By LabMedica International staff writers
Posted on 03 Jun 2020
Print article
Image: Researchers Develop Chip for Biomolecule Detection to Aid COVID-19 Testing (Photo courtesy of Purdue University)
Image: Researchers Develop Chip for Biomolecule Detection to Aid COVID-19 Testing (Photo courtesy of Purdue University)
Researchers have developed a patented method for single biomolecule detection that overcomes limitations of current technologies and could help in the fight against COVID-19.

Purdue University (West Lafayette, Ind., USA) innovators have created a method that uses a special sensor similar to a computer chip. The application-specific integrated circuit chip is designed for the early detection of a number of pathogens and viruses. The technique involves machine learning to train the system to detect certain features associated with particular diseases and viruses. Then, when a sample is run through the system, it can detect those features and confirm the presence of particular viruses and diseases. Simulations have shown this technique could be effective in detecting COVID-19.

The method uses a metal-oxide semiconductor sensor with embedded, fluidic nanochannels. As a biomolecule moves through the nanochannel, a high frequency current is measured that contains information about the biomolecule, such as the type of nucleotides in the case of DNA/RNA, which can be used to classify the molecule.

“This method does not have the problems associated with other nanopore techniques because it does not require the difficult drilling of extremely small nanopores, can detect four nucleotides at a time, and is not significantly affected by the rotation or position of the biomolecule in the nanochannel,” said Saeed Mohammadi, a Purdue professor of electrical and computer engineering. “We want to find partners to move this technology to the public as soon as we can to help in COVID-19 testing. We know it can be an effective, easy and inexpensive method for detecting viruses, potentially the one linked to the current pandemic.”

Related Links:
Purdue University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more