We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

University of Oxford Develops Rapid Testing Technology for Coronavirus; Starts Clinical Trial of Potential Drug Treatments

By LabMedica International staff writers
Posted on 31 Mar 2020
Print article
Illustration
Illustration
Scientists from the University of Oxford’s (Oxford, UK) Engineering Science Department and the Oxford Suzhou Centre for Advanced Research (OSCAR) have developed a rapid testing technology for the novel corona virus SARS-CoV-2 (COVID-19). The new test is based on a technique which is capable of giving results in just half an hour as compared to 1.5 to 2 hours for previous viral RNA tests and does not need a complicated instrument.

The technology is also very sensitive which means that patients in the early stages of infection can be identified sooner, potentially helping to reduce the spread of the coronavirus SARS-CoV-2 (COVID-19). The technology only requires a simple heat-block which maintains a constant temperature for RNA reverse transcription and DNA amplification, and the results can be read by the naked eye, making it potentially useful in rural area or community healthcare centers.

The technology has been validated with real clinical samples at Shenzhen Luohou People’s Hospital in China. Shenzhen Luohu People’s Hospital has applied the rapid detection kits on 16 clinic samples, including eight positives and eight negatives, which have been confirmed by conventional RT-PCR methods and other clinical evidence. The test results using the rapid detection kits were all successful and the Oxford scientists are now working to develop an integrated device so that the test can be used at clinics, airports, or even for home use.

“The beauty of this new test lies in the design of the viral detection that can specifically recognize SARS-CoV-2 (COVID-19) RNA and RNA fragments. The test has built-in checks to prevent false positives or negatives and the results have been highly accurate,” said Prof. Wei Huang who led the team of researchers.

Meanwhile, researchers from the University of Oxford have launched a new clinical trial to test the effects of potential drug treatments for patients admitted to hospital with COVID-19 and the first patients have been recruited. The Randomised Evaluation of COVid-19 thERapY (RECOVERY) trial will provide doctors and the health service with information they need to determine which treatments should be used. The treatments initially included in the study have been recommended by an expert panel that advises the Chief Medical Officer in England. These are Lopinavir-Ritonavir, normally used to treat HIV, and the steroid dexamethasone, which is used in a wide range of conditions to reduce inflammation. The safety and side effects of both drugs are well known. In the future, the RECOVERY trial will be expanded to assess the impact of other potential treatments as they become available. Patients who have tested positive for COVID-19 and joining the trial will be allocated at random by computer to receive one of the two drugs being studied or no additional medication. This will enable researchers to see whether any of the possible new treatments are more or less effective than those currently used for patients with COVID-19.

“There is an urgent need for reliable evidence on the best care for patients with COVID-19. Providing possible new treatments through a well-designed clinical trial is the best way to get that evidence,” said Peter Horby, Professor of Emerging Infectious Diseases and Global Health in the Nuffield Department of Medicine, University of Oxford, and Chief Investigator for the trial. “Adults admitted to hospital with COVID-19 should be offered the opportunity to participate in this trial and contribute to improving care for everyone. All patients will receive the standard full medical care, regardless of which treatment group they are placed in.”

Additionally, a team of researchers from the Oxford Vaccine Group and Oxford's Jenner Institute who have been working on designing a vaccine since January this year have identified a vaccine candidate and are working towards the first clinical testing phase. A chimpanzee adenovirus vaccine vector (ChAdOx1), developed at Oxford’s Jenner Institute, was chosen as the most suitable vaccine technology for a SARS-CoV-2 vaccine as it can generate a strong immune response from one dose and it is not a replicating virus, so it cannot cause an ongoing infection in the vaccinated individual. This also makes it safer to give to children, the elderly and anyone with a pre-existing condition such as diabetes. Chimpanzee adenoviral vectors are a very well-studied vaccine type, having been used safely in thousands of subjects, from one week to 90 years of age, in vaccines targeting over 10 different diseases.

Related Links:
University of Oxford

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more