LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hydrogel Cultivation Generates Large Populations of Activated T-Cells

By LabMedica International staff writers
Posted on 30 Apr 2019
Print article
Image: T-cells interacting with the transparent gel (Photo courtesy of Hawley Pruitt, Johns Hopkins University).
Image: T-cells interacting with the transparent gel (Photo courtesy of Hawley Pruitt, Johns Hopkins University).
A novel hydrogel-based culture system was used to generate activated immune T-cells that were shown to be able to block growth of melanoma tumors in a mouse model.

Current T-cell therapies require the removal and culture of the cells in order to expand their number by several thousand‐fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. While the extracellular matrix (ECM) has been used to preserve and augment cell phenotype, it has not been applied to cellular immunotherapies.

Investigators at Johns Hopkins University (Baltimore, MD, USA) extended research into the potential use of ECM by producing a hyaluronic acid (HA)‐based hydrogel that was engineered to present the two stimulatory signals required for T‐cell activation. They called this gel an "artificial T‐cell stimulating matrix (aTM)". The investigators created and tested a range of hydrogels with different tactile properties, from very soft - like a single cell - to hard gels resembling the state within a cell-packed lymph node.

Results published in the April 10, 2019, online edition of the journal Advanced Materials revealed that the combination of the ECM environment and mechanically sensitive T-cell receptor signaling from the aTM resulted in a rapid and robust expansion of rare, antigen‐specific CD8+ T-cells. T-cells cultivated onto a soft hydrogel multiplied from just a few cells to about 150,000 cells within seven days. By contrast, conventional methods to stimulate and expand T-cells were able to generate only about 20,000 cells within the same time period. In addition, more than 80% of T-cells implanted onto the soft surface multiplied themselves, compared with none of the T-cells implanted on the firmest type of hydrogel.

In a mouse melanoma model system, tumors in animals treated with T-cells cultured on hydrogels remained stable in size, and some of the mice survived beyond 40 days. By contrast, tumors in mice injected with T-cells cultured in plastic dishes grew, and none of these mice lived beyond 30 days.

"One of the surprising findings was that T-cells prefer a very soft environment, similar to interactions with individual cells, as opposed to a densely packed tissue," said senior author Dr. Jonathan Schneck, professor of pathology, medicine, and oncology at Johns Hopkins University. "As we perfect the hydrogel and replicate the essential feature of the natural environment, including chemical growth factors that attract cancer-fighting T-cells and other signals, we will ultimately be able to design artificial lymph nodes for regenerative immunology-based therapy."

Related Links:
Johns Hopkins University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more