LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Engineered Ligand Protein Protects Mice from Developing Cancer

By LabMedica International staff writers
Posted on 04 Mar 2019
Print article
Image: A confocal microscope image shows the SA-4-1BBL (green color) bound to its receptor on an immune cell (red color) to initiate an immune activation cascade to fight cancer (Photo courtesy of the University of Louisville).
Image: A confocal microscope image shows the SA-4-1BBL (green color) bound to its receptor on an immune cell (red color) to initiate an immune activation cascade to fight cancer (Photo courtesy of the University of Louisville).
A team of cancer researchers has developed a recombinant protein molecule that, when injected into mice, was able to protect the animals against subsequent tumor challenge irrespective of the tumor type.

Investigators at the University of Louisville (Kentucky, USA) were working with SA-4-1BBL, an engineered oligomeric form of the 4-1BBL ligand protein. 4-1BB ligand is a membrane bound member of the TNF (tumor necrosis factor) superfamily that is expressed on activated B-lymphocytes, macrophages, and dendritic cells. The ligand is specific for the 4-1BB (CD137) receptor and may play a role in inducing the proliferation of activated peripheral blood T-lymphocytes. 4-1BB is a type two transmembrane glycoprotein receptor belonging to the TNF superfamily, expressed on activated T lymphocytes. It is currently of interest to immunologists as a co-stimulatory immune checkpoint molecule.

T-cells require two signals to become fully activated. A first signal, which is antigen-specific, is provided through the T-cell receptor (TCR), which interacts with peptide-MHC molecules on the membrane of antigen presenting cells (APC). A second signal, the co-stimulatory signal, is antigen nonspecific and is provided by the interaction between co-stimulatory molecules expressed on the membrane of APC and the T-cell.

Previous studies have shown that co-stimulation through the 4-1BB receptor generates robust CD8+ T-effector and memory responses. The only known ligand, 4-1BBL, is a trimeric transmembrane protein that has no co-stimulatory activity as a soluble molecule. Thus, agonistic antibodies to the receptor have been used for cancer immunotherapy in preclinical models and are currently being evaluated in the clinic.

The investigators reported in the February 15, 2019, issue of the journal Cancer Research that treatment with SA-4-1BBL as a single agent was able to protect mice against subsequent tumor challenge irrespective of the tumor type. Protection was longlasting (more than eight weeks) and a bona fide property of SA-4-1BBL, as treatment with an agonistic antibody to the 4-1BB receptor was ineffective in generating immune protection against tumor challenge.

Mechanistically, SA-4-1BBL significantly expanded IFNgamma-expressing, preexisting memory-like CD44+CD4+ T-cells and NK cells in naïve mice as compared with the agonistic antibody. In vivo blockade of IFNgamma or depletion of CD4+ T or NK cells, but not CD8+ T or B-cells, abrogated the immunopreventive effects of SA-4-1BBL against cancer.

“The novelty we are reporting is the ability of this molecule to generate an immune response that patrols the body for the presence of rare tumor cells and to eliminate cancer before it takes hold in the body,” said senior author Dr. Haval Shirwan, professor of microbiology and immunology at the University of Louisville. “Generally, the immune system will need to be exposed to the tumor, recognize the tumor as dangerous, and then generate an adaptive and tumor-specific response to eliminate the tumor that it recognizes. Thus, our new finding is very surprising because the immune system has not seen a tumor, so the response is not to the presence of a tumor. With advances in cancer screening technologies and genetic tools to identify high-risk individuals, we ultimately are hoping to have the opportunity to test the SA-4-1BBL molecule for immunoprevention in individuals who are predisposed to certain cancers, as well as in the presence of precancerous lesions.”

Related Links:
University of Louisville

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more