LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Mutation Reduces Glucose Uptake and Premature Mortality

By LabMedica International staff writers
Posted on 25 Oct 2018
Print article
Image: The mechanism of normal blood sugar absorption (left) vs. insulin resistance in Type II diabetes (right) (Photo courtesy of Wikimedia Commons).
Image: The mechanism of normal blood sugar absorption (left) vs. insulin resistance in Type II diabetes (right) (Photo courtesy of Wikimedia Commons).
A loss-of-function mutation in a gene in the digestive tract reduces glucose uptake from ingested food, which helps to protect the individual from diabetes, obesity, heart failure, and premature mortality from these disorders.

Loss-of-function mutations in the SGLT1 (sodium/glucose co-transporter-1) gene result in a rare glucose/galactose malabsorption disorder and neonatal death if untreated. In the general population, effects related to intestinal glucose absorption have not been well characterized.

To shed light on these effects, investigators at Harvard University Medical School (Boston, MA, USA) conducted experiments designed to identify functional SGLT1 gene variants and characterize their clinical consequences.

Whole exome sequencing was performed on 8,478 participants in the ARIC (Atherosclerosis Risk in Communities) study. This study was a 25-year-long observational trial of atherosclerosis and cardiovascular risk factors in people living in four communities in the USA. In addition to genetic testing, the association of functional, nonsynonymous substitutions in SGLT1 with two-hour oral glucose tolerance test results was determined.

Results published in the October 9, 2018, issue of the Journal of the American College of Cardiology revealed that approximately 6% of the ARIC participants carried a mutation in SGLT-1 that caused limited impairment of glucose absorption. Individuals with this mutation had a lower incidence of type II diabetes, were less obese, had a lower incidence of heart failure, and had a lower mortality rate when compared to those without the mutation.

The investigators believe that reduced intestinal glucose uptake induced by the mutation may protect the individual from long-term cardiovascular and metabolic disorders, providing support for development of therapies that will target SGLT1 function to prevent and treat metabolic conditions.

"We are excited about this study because it helps clarify the link between what we eat, what we absorb, and our risk for disease. Knowing this opens the door to improved therapies for cardio-metabolic disease," said senior author Dr. Scott D. Solomon, professor of medicine at Harvard University Medical School. "This study is the first to fully evaluate the link between mutations in the gene mainly responsible for absorbing glucose in the gut--SGLT-1, or sodium glucose co-transporter-1--and cardio-metabolic disease."

Related Links:
Harvard University Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more