LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genome Editing Used to Correct Mitochondrial Mutations

By LabMedica International staff writers
Posted on 08 Oct 2018
Print article
Image: Very high magnification micrograph showing ragged red fibers (also ragged red fibers), commonly abbreviated RRF, in a mitochondrial myopathy (Photo courtesy of Wikimedia Commons).
Image: Very high magnification micrograph showing ragged red fibers (also ragged red fibers), commonly abbreviated RRF, in a mitochondrial myopathy (Photo courtesy of Wikimedia Commons).
A recently developed mouse model, which mimics a cardiac mitochondrial disease, was used to demonstrate the potential use of genomic engineering to treat the disorder by eliminating the mutation that causes it.

Mitochondrial diseases are, as the name implies, a group of disorders caused by dysfunctional mitochondria. About 15% of the time these diseases are caused by mutations in the mitochondrial DNA (mtDNA) that affect mitochondrial function. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. The subclass of these diseases that have neuromuscular disease symptoms are often called a mitochondrial myopathy.

To address the lack of effective treatment for these disorders, investigators at the University of Cambridge (United Kingdom) exploited a recently developed mouse model (the m.5024C>T tRNAAla mouse) that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue.

To modify the mitochondrial genome, the investigators chose a programmable nuclease therapy approach, using mitochondrially targeted zinc-finger nucleases (mtZFN), rather than the more frequently used CRISPR/Cas9 method. The mtZFN gene-editing tool was delivered to the mice via an adeno-associated virus vector. The tool was designed to recognize and then eliminate mutant mitochondrial DNA, based on sequence differences between healthy and mutant mitochondrial DNA.

The investigators reported in the September 24, 2018, online edition of the journal Nature Medicine that by systemically administering mitochondrially targeted mtZFN using adeno-associated virus to the mice, they successfully induced specific elimination of mutant mtDNA across the heart. The biochemical and physiological behavior of the diseased hearts returned to near normal values.

"One idea for treating these devastating diseases is to reduce the amount of mutated mitochondrial DNA by selectively destroying the mutated DNA, and allowing healthy DNA to take its place," said senior author Dr. Michal Minczuk, program leader at the mitochondrial biology unit of the University of Cambridge.

Related Links:
University of Cambridge

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more