LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Teratomas Offer Source for Rebuilding Damaged Tissues

By LabMedica International staff writers
Posted on 19 Jul 2018
Print article
Image: A micrograph of a teratoma showing tissue from all three germ layers: mesoderm (immature cartilage - left-upper), endoderm (gastrointestinal glands - center-bottom) and ectoderm (epidermis - right) (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a teratoma showing tissue from all three germ layers: mesoderm (immature cartilage - left-upper), endoderm (gastrointestinal glands - center-bottom) and ectoderm (epidermis - right) (Photo courtesy of Wikimedia Commons).
Muscle stem cells, which were derived from benign teratoma tumors, were found to demonstrate exceptional potential as starting material for rebuilding and maintaining damaged muscle tissues.

Investigators at the University of Minnesota Medical School (Minneapolis and Duluth, USA) created teratomas using undifferentiated pluripotent cells injected into immunodeficient mice, and isolated muscle stem cells from them. Following purification by fluorescence-activated cell sorting (FACS) and transplantation into diseased muscles, mouse teratoma-derived myogenic progenitors demonstrated very high engraftment potential. As few as 40,000 cells could reconstitute about 80% of the tibialis anterior muscle volume.

Results published in the July 5, 2018, issue of the journal Cell Stem Cell revealed that newly generated fibers are innervated, expressed adult myosins, and ameliorated dystrophy-related force deficit and fatigability. Teratoma-derived myogenic progenitors also contributed quiescent PAX7+ muscle stem cells, enabling long-term maintenance of regenerated muscle and allowing muscle regeneration in response to subsequent injuries. Transcriptional profiling revealed that teratoma-derived myogenic progenitors underwent embryonic-to-adult maturation when they contributed to the stem cell compartment of regenerated muscle.

"The goal of this research was to seek in unexplored places a source of cells that, when transplanted, would rebuild skeletal muscle and demonstrate significant improvements in muscle strength and resilience," said senior author Dr. Michael Kyba, professor of pediatrics at the University of Minnesota Medical School.

In light of the ethical issues surrounding the source of human stem cells, teratomas are being looked at as an alternative source for research because they lack the potential to grow into functional human beings. Results of the current study suggest that teratomas are a rich and accessible source of potent transplantable skeletal muscle stem cells.

Related Links:
University of Minnesota Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more