We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method Developed for Malaria Parasite Tissue Culture

By LabMedica International staff writers
Posted on 23 May 2018
Print article
Image: The large green structures are the P. vivax parasites surrounded by human liver cells (Photo courtesy of Dr. John Adams, University of South Florida).
Image: The large green structures are the P. vivax parasites surrounded by human liver cells (Photo courtesy of Dr. John Adams, University of South Florida).
A new method for maintaining the liver form of the malaria parasite in tissue culture is expected to lay the foundation for next-generation malaria control and elimination.

Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro liver stage models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites.

The term “hypnozoite” is derived from the Greek words hypnos (sleep) and zoon (animal). Hypnozoites are dormant forms in the life cycles of certain parasitic protozoa that belong to the phylum Apicomplexa (Sporozoa) and are best known for their probable association with latency and relapse in human malarial infections caused by P. ovale and P. vivax. Consequently, the hypnozoite is of great biological and medical significance.

In order to improve the means available of studying the liver stage of malaria, investigators at the University of South Florida (Tampa, USA) developed a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes and cell culture reagents.

The investigators reported in the May 9, 2018, online edition of the journal Nature Communications that in their culture system hepatocyte physiology was maintained for at least 30 days and supported development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts.

Reducing culture handling to a 384-well microtiter format promoted key morphological and functional characteristics of native in situ hepatocytes and allowed for high-resolution imaging, seamless image acquisition with faster imaging speed, and integration of automated high-content image analysis.

"Almost all of the current strategies are focused the blood-stage of malaria - after the person has already become infected," said senior author Dr. John Adams, distinguished health professor at the University of South Florida. "But, in order to eradicate this disease, you need to block the cycle of reinfection and the most efficient way to do that is by blocking the parasite from coming into the person. This has not been possible previously because the methods of studying the liver stage have just not been there. Our technique makes that work possible."

Related Links:
University of South Florida

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more