LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cardiomyocyte Extracellular Vesicles Repair Heart Damage in Model

By LabMedica International staff writers
Posted on 02 May 2018
Print article
Image: Recovery of the injured heart muscle after four weeks of treatment with extracellular vesicles. Immunostains: wheat germ agglutinin (red), troponin (green), and DAPI [(4\',6-diamidino-2-phenylindole)] (blue) (Photo courtesy of Dr. Gordana Vunjak-Novakovic, Columbia University School of Engineering and Applied Science).
Image: Recovery of the injured heart muscle after four weeks of treatment with extracellular vesicles. Immunostains: wheat germ agglutinin (red), troponin (green), and DAPI [(4\',6-diamidino-2-phenylindole)] (blue) (Photo courtesy of Dr. Gordana Vunjak-Novakovic, Columbia University School of Engineering and Applied Science).
Studies conducted with a rat myocardial infarction model demonstrated the benefits of treating damaged heart muscle with extracellular vesicles (EVs) secreted by cardiomyocytes.

The ability of EVs to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. For example, EVs secreted by therapeutic cells injected into infarcted hearts can induce recovery through the delivery of cell-specific microRNAs. However, retention of the EVs and the therapeutic effects are short-lived.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

In order to increase the efficacy of EV treatment, investigators at Columbia University School of Engineering and Applied Science (New York, NY, USA) developed a hydrogel patch capable of slowly releasing EVs after being implanted onto the injured heart in rat models of myocardial infarction. The EVs were isolated after being secreted from cardiomyocytes (CMs) derived from induced pluripotent stem cells.

The investigators reported in the April 23, 2018, online edition of the journal Nature Biomedical Engineering that EV treatment reduced arrhythmic burden, promoted ejection-fraction recovery, decreased CM apoptosis 24 hours after infarction, and reduced infarct size and cell hypertrophy four weeks post-infarction when implanted onto infarcted rat hearts. They also showed that EVs were enriched with cardiac-specific microRNAs known to modulate CM-specific processes.

"We were really excited to find that not only did the hearts treated with cardiomyocyte extracellular vesicles experience much fewer arrhythmias, but they also recovered cardiac function most effectively and most completely," said senior author Dr. Gordana Vunjak-Novakovic, professor of biomedical engineering at Columbia University School of Engineering and Applied Science. "In fact, by four weeks after treatment, the hearts treated with extracellular vesicles had similar cardiac function as those that were never injured."

"Once we better understand how exactly the extracellular vesicles do what they do," said Dr. Vunjak-Novakovic, "we should be able to extend their use to a range of cardiovascular diseases, and significantly advance the field of cell-free heart therapy."

Related Links:
Columbia University School of Engineering and Applied Science

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more