LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lung Progenitor Cells Enable Culture of 3D Organoids for Studies

By LabMedica International staff writers
Posted on 15 Mar 2018
Print article
Image: Mouse (left) and human (right) alveolar progenitor cells grow into large lung organoids in culture, and make multiple types of epithelial cells including gas exchange type 1 cells (red) and surfactant-producing type 2 cells (green) (Photo courtesy of the Morrisey Laboratory, University of Pennsylvania).
Image: Mouse (left) and human (right) alveolar progenitor cells grow into large lung organoids in culture, and make multiple types of epithelial cells including gas exchange type 1 cells (red) and surfactant-producing type 2 cells (green) (Photo courtesy of the Morrisey Laboratory, University of Pennsylvania).
An in vitro system for growth of three-dimensional lung organoids was used to characterize a line of alveolar stem cells that plays a critical role in repairing lung tissues damaged by severe influenza or other respiratory ailments such as chronic obstructive pulmonary disease (COPD).

Functional tissue regeneration is required for the restoration of normal organ function after severe injury. Some organs, such as the intestine, harbor active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration.

To better understand the processes involved in lung tissue regeneration, investigators at the University of Pennsylvania (Philadelphia, USA) examined the epithelial cells that line the surfaces of lung gas-exchange alveoli for stem cell behavior that could restore normal respiratory function after severe injury.

The investigators reported in the February 28, 2018, online edition of the journal Nature that they had identified an alveolar epithelial progenitor (AEP) lineage, which was embedded in a larger population of epithelial cells called alveolar type 2 cells (AT2s). AEPs were shown to be a stable lineage during alveolar homeostasis but expanded rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibited a distinct transcriptome, epigenome, and functional phenotype and responded specifically to Wnt and fibroblast growth factor (FGF) signaling.

Human AEPs could be selectively isolated by targeting the conserved cell surface marker TM4SF1. Once isolated, these cells were used as functional human alveolar epithelial progenitor cells for growing three-dimensional lung organoids.

"From our organoid culture system, we were able to show that AEPs are an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies," said senior author Dr. Edward E. Morrisey, professor of cell and developmental biology at the University of Pennsylvania. "One of the most important places to better understand lung regeneration is in the alveoli, the tiny niches within the lung where oxygen is taken up by the blood and carbon dioxide is exhaled. To better understand these delicate structures, we have been mapping the different types of cells within the alveoli. Understanding cell-cell interactions should help us discover new players and molecular pathways to target for future therapies."

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more