LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Cancer Treatments Aimed at Preventing Drug Resistance

By LabMedica International staff writers
Posted on 14 Mar 2018
Print article
Image: The crystal Structure of K-Ras G12C (Photo courtesy of the Yale Cancer Center).
Image: The crystal Structure of K-Ras G12C (Photo courtesy of the Yale Cancer Center).
Cancer researchers have proposed a method for preventing development of resistance to chemotherapy that targets a mutation that appears spontaneously in certain lung tumors.

Activating mutations in RAS genes are associated with approximately 20% of all human cancers. While new targeted therapies have demonstrated preclinical promise in inhibiting the KRAS G12C variant, concerns exist regarding the effectiveness of such therapies in vivo given the possibilities of existing heterogeneity within the tumor or de novo mutation that leads to treatment resistance.

To address these concerns, investigators at Yale University (New Haven, CT, USA) performed deep sequencing of 27 KRAS G12-positive lung tumors to determine the prevalence of other oncogenic mutations within KRAS or within commonly mutated downstream genes that could confer resistance at the time of treatment. They also passaged patient-derived xenografts to assess the potential for novel KRAS mutation to arise during subsequent tumor evolution. Furthermore, they estimated the de novo mutation rate in KRAS position 12 and in genes downstream of KRAS.

The investigators reported in the February 16, 2018, online edition of the journal Oncogene that they had found no evidence of heterogeneity that would compromise KRAS G12C targeted therapy within sequenced lung tumors or passaged xenografts. They did find that mutations that confer resistance were even less likely to occur downstream of KRAS than to occur within KRAS.

Overall, the findings suggested that resistance to targeted therapy of KRAS G12C-positive tumors was unlikely to be present at the time of treatment and, among the de novo mutations likely to confer resistance were those in BRAF, a gene with targeted inhibitors presently available.

“Currently, we treat tumors with medication to target and inhibit the tumor as is, but not to prevent the future evolution of tumors into resistant forms,” said senior author Dr. Jeffrey Townsend, associate professor of ecology and evolutionary biology at Yale University. “We need to develop techniques and drugs that not only target the mutations that we know are there, but that also stop the evolution of the tumor. The treatment initially appears to successfully target a specific mutation in KRAS, but other mutations can appear down the road. By assessing the tumor's potential to reinvent itself after therapy, our findings inform us on how to combine therapies to intervene before cancer comes back in full force.”

Related Links:
Yale University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more