We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cross-linked Hydrogels Developed for 3D Printing

By LabMedica International staff writers
Posted on 08 Jan 2018
Print article
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
A team of Japanese biomedical engineers has developed a novel, enzyme-based three-dimensional printing method that enables in vitro growth of complex cellular structures.

Investigators at Osaka University (Japan) reported in the December 11, 2017, online edition of the journal Macromolecular Rapid Communications that they had developed a cytocompatible inkjet bio-printing approach that enabled the use of a variety of bio-inks to produce hydrogels with a wide range of characteristics.

Stabilization of bio-inks was obtained by using the enzyme horseradish peroxidase (HRP) to catalyze cross-linking within the hydrogel while consuming cytotoxic hydrogen peroxide (H2O2) in the process.

Three-dimensional cell-laden hydrogels were fabricated by the sequential dropping of a polymer-containing bio-ink that had been cross-linked through the enzymatic reaction and H2O2 onto droplets of another bio-ink that contained the polymer, HRP, and cells. The HRP in the second drop neutralized the H2O2 carried over in the first drop. This approach promoted adhesion of the biological ink droplets and allowed printing of complex biological structures. The approximately 95% viability of mouse fibroblasts enclosed in a bio-ink hydrogel consisting of gelatin and hyaluronic acid derivatives and subsequent elongation of the cells demonstrated the suitability of this three-dimensional printing approach.

"Advances in induced pluripotent stem cell technologies have made it possible for us to induce stem cells to differentiate in many different ways," said senior author Dr. Makoto Nakamura, professor of biochemical engineering at Osaka University. "Now we need new scaffolds so we can print and support these cells to move closer to achieving full three-dimensional printing of functional tissues. Our new approach is highly versatile and should help all groups working to this goal."

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Respiratory Panel Plus has received U.S. FDA clearance (Photo courtesy of QIAGEN)

New Respiratory Syndromic Testing Panel Provides Fast and Accurate Results

Respiratory tract infections are a major reason for emergency department visits and hospitalizations. According to the CDC, the U.S. sees up to 41 million influenza cases annually, resulting in several... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more