LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mouse Study Identifies Molecular Mechanism behind Bacterial Meningitis

By LabMedica International staff writers
Posted on 20 Dec 2016
Print article
Image: A fluorescent micrograph showing detection of Salmonella (red) in macrophages (green) and other immune cells in the ventricles of the brain of a mouse orally fed Salmonella. Salmonella-infected areas were associated with an increase of cells (blue nucleus) in the ventricles and meninges of the brain, a hallmark of bacterial meningitis (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
Image: A fluorescent micrograph showing detection of Salmonella (red) in macrophages (green) and other immune cells in the ventricles of the brain of a mouse orally fed Salmonella. Salmonella-infected areas were associated with an increase of cells (blue nucleus) in the ventricles and meninges of the brain, a hallmark of bacterial meningitis (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
A team of molecular microbiologists examined the ability of the bacterium Salmonella enterica serovar Typhimurium to infect the central nervous system and cause meningitis following the natural route of infection in mice.

Investigators at the [U.S.] National Institute of Allergy and Infectious Diseases Rocky Mountain Laboratories (Hamilton, MT, USA) worked with two lines of C57BL/6J mic. These animals are extremely susceptible to systemic infection by Salmonella Typhimurium because of loss-of-function mutations in Nramp1 (Natural resistance-associated macrophage protein 1), a phagosomal membrane protein that controls iron export from vacuoles and inhibits Salmonella growth in macrophages.

In the current study, the investigators assessed the ability of Salmonella to disseminate to the central nervous system (CNS) after oral infection in C57BL/6J mice expressing either wild-type (resistant) or mutant (susceptible) alleles of Nramp1. They reported in the December 9, 2016, online edition of the American Journal of Pathology that in both strains, oral infection resulted in focal meningitis and ventriculitis with recruitment of inflammatory monocytes to the CNS. In the susceptible Nramp1−/− mice, there was a direct correlation between bacteremia and the number of bacteria in the brain, which was not observed in resistant Nramp1+/+ mice.

The investigators concluded that Nramp1 was not essential for Salmonella entry into the CNS or neuroinflammation, but may have influenced the mechanisms of CNS entry as well as the severity of meningitis.

Related Links:
[U.S.] National Institute of Allergy and Infectious Diseases

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more