LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Define the Structure of Parkinson's Disease Protein Aggregates

By LabMedica International staff writers
Posted on 12 Apr 2016
Print article
The use of advanced imaging techniques has enabled biochemists to determine the molecular structure of alpha-synuclein protein fibrils such as those found in the brains of individuals with Parkinson's disease.

The accumulation of misfolded alpha-synuclein amyloid fibrils leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. It has been exceedingly difficult to define the structure of alpha-synuclein fibrils due to their insolubility and complexity.

Investigators at the University of Illinois (Champaign-Urbana, USA) and their collaborators used advanced imaging techniques such as magic-angle spinning nuclear magnetic resonance (a type of solid state NMR) to measure the placement of atoms in samples of alpha-synuclein.

They described in the March 28, 2016, online edition of the journal Nature Structural and Molecular Biology a structure with common amyloid features including parallel, in-register beta-sheets and hydrophobic-core residues. The structure revealed substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. The results were validated using EM (electron microscope) and X-ray fiber diffraction.

The investigators synthesized alpha-synuclein fibrils according to their structural data and showed that these fibrils induced robust Parkinson's-like pathology in primary neuronal cultures.

"We had to find patterns in the data and systematically test all the possibilities for how the protein would fit together," said senior author Dr. Chad Rienstra, professor of chemistry at the University of Illinois. "It is like when you solve a really complex puzzle, you know you have it right at the end because all the pieces fit together. That is what we got with this structure. This is the first structure of the full-length fibril protein, which is now well established to be important for the pathology of Parkinson's disease. Knowing that structure will open up many new areas of investigation for diagnosing and treating Parkinson's disease."

"We think that the structure that we resolved of alpha-synuclein fibrils will be really significant in the immediate future and has use for diagnosing Parkinson's in patients before they are symptomatic," said Dr. Rienstra. "Once people start having symptoms, whether of Alzheimer's or Parkinson's, in many ways it is a little too late to be effective with therapy. But if you catch it early, I think there is a lot of promise for therapies that are being developed. Those are all relying upon the structures that we are solving."

Related Links:

University of Illinois


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more