LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Development of Neurodegenerative Diseases Linked to Astrocyte Nitric Oxide Signaling

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Standard histology H&E (hematoxylin and eosin) staining of tissue from an eight-year-old Alexander disease patient. Rosenthal fibers—the hallmark of the disease—are shown in pink; nuclei are shown in blue (Photo courtesy of Liqun Wang, Feany Laboratory, Brigham and Women\'s Hospital).
Image: Standard histology H&E (hematoxylin and eosin) staining of tissue from an eight-year-old Alexander disease patient. Rosenthal fibers—the hallmark of the disease—are shown in pink; nuclei are shown in blue (Photo courtesy of Liqun Wang, Feany Laboratory, Brigham and Women\'s Hospital).
Nitric oxide (NO) signaling, initiated by brain astrocytes, has been linked to the destruction of neurons that characterizes many neurodegenerative diseases.

Astrocytes are now thought to play a number of active roles in the brain, including the secretion or absorption of neural transmitters and maintenance of the blood–brain barrier.

To study cellular events that occur in the brain during the progress of neurological disorders, investigators at Brigham and Women's Hospital (Boston, MA, USA) developed a fruit fly model of Alexander disease, a rare degenerative neurological disorder caused by astrocyte dysfunction.

Using this model system, the investigators identified astrocyte-derived NO as a signaling molecule triggering astrocyte-mediated neuronal degeneration. NO acted through cGMP signaling in neurons to promote cell death. Astrocytes themselves also degenerated, via the DNA damage response and p53 protein.

Results from the fruit fly model were confirmed in a mouse model. Furthermore, evidence of activation of the NO pathway was detected in samples from human patients with Alexander disease.

"We are excited to be contributing to a growing area of study of how astrocytes contribute to neurodegeneration, and to have uncovered a role for NO as a neuronal cell death signaling molecule," said senior author Dr. Mel B. Feany, a senior pathologist at Brigham and Women's Hospital. "Our findings define a potential mechanism for neuronal cell death in Alexander disease and possibly other neurodegenerative diseases with astrocyte dysfunction."

The study was published in the November 26, 2015, online edition of the journal Nature Communications.

Related Links:

Brigham and Women's Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more