LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combination of Genetic and Metabolic Analysis Links Endoplasmic Reticulum Stress to Cardiovascular Disease Risk

By LabMedica International staff writers
Posted on 17 Nov 2015
Print article
Image: Using DNA and RNA markers, ER stress was uncovered as the biological process responsible for the increased risk of heart disease events (Photo courtesy of Mark Dubowski, Duke University).
Image: Using DNA and RNA markers, ER stress was uncovered as the biological process responsible for the increased risk of heart disease events (Photo courtesy of Mark Dubowski, Duke University).
A novel investigative approach utilizing a combination of genetics, transcriptomics, epigenetics, and metabolomics has enabled researchers to link endoplasmic reticulum (ER) stress to heritable cardiovascular disease (CVD) risk.

It is known that CVD is a strongly heritable trait. However, despite application of the latest genomic technologies, the genetic architecture underlying CVD risk has remained poorly defined, and mechanisms underlying this susceptibility are incompletely understood.

In a dynamic new approach, investigators at Duke University (Durham, NC, USA) combined genetics, epigenetics, and transcriptomics with metabolomics to analyze samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Metabolomics is the study of chemical processes involving metabolites, while the metabolome represents the collection of all metabolites in a biological cell, tissue, organ, or organism that are the end products of cellular processes.

In this study, the investigators performed genome-wide mapping of heart disease-related metabolites measured in the blood as the genetic traits of interest (instead of the disease itself), in a large cohort of 3,512 patients at risk of heart disease from the CATHGEN study.

The CATHGEN Research Project is a resource for the investigation of genes associated with coronary heart disease and related disorders. The project collected peripheral blood samples from consenting research subjects undergoing cardiac catheterization at Duke University Medical Center from 2001 through 2011. CATHGEN offers DNA, RNA, and plasma samples and a database of genetic information, blood biochemical markers, clinical information, and clinical follow-up to investigate the relationships between genes, cardiovascular disease, and outcomes.

Results published in the November 5, 2015, online edition of the journal PLOS Genetics, linked ER stress to the risk of future heart events. Among its many activities, the endoplasmic reticulum folds and modifies newly formed proteins so they have the correct three-dimensional shape to function properly. The ER also helps transport proteins, fats, and other materials to specific sites within the cell or to the cell surface. When placed under certain types of stress, the ER can leak molecules into other parts of the cell, which can trigger the apoptotic pathway that leads to cell death and eventually to organ dysfunction.

"ER stress has long been linked to Type I diabetes and Parkinson's disease, among others, but this is the first indication that it is also playing a role in common heart attacks and death from heart disease," said senior author Dr. Svati H. Shah, associate professor of medicine at Duke University. "It is also exciting that we are able to measure this ER stress in a small drop of blood, providing a potential way to intercede and lower the risk of a major cardiovascular event."

"Using this multiplatform "omics" approach, we identified these novel genetic variants associated with metabolite levels and with cardiovascular disease itself," said Dr. Shah. "We do not believe that the metabolites themselves are causing heart attacks—they might just be byproducts of a dysregulated process that people are genetically susceptible to—but that is something we need to study further."

Related Links:

Duke University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more