LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Improved Stem Cell Technology Enables Mass Differentiation of Muscle Fiber Cells

By LabMedica International staff writers
Posted on 16 Aug 2015
Print article
Image: Micrograph of differentiated muscle fibers (green) with cell nuclei shown in blue (Photo courtesy of Dr. Olivier Pourquié, Harvard University Medical School).
Image: Micrograph of differentiated muscle fibers (green) with cell nuclei shown in blue (Photo courtesy of Dr. Olivier Pourquié, Harvard University Medical School).
Improvements in stem cell technology have enabled the in vitro differentiation and growth of large numbers of muscle fiber cells, including muscle fibers from a mouse model of Duchenne muscular dystrophy.

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, investigators at Harvard University Medical School (Boston, MA, USA) were able to establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting.

The investigators showed that development of primary and secondary skeletal muscle could be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells.

Results published in the August 3, 2015, online edition of the journal Nature Biotechnology further revealed that mouse ES cells also differentiated into Pax7+ cells with satellite cell characteristics, including the ability to form dystrophin+ fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibited an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.

“This has been the missing piece: the ability to produce muscle cells in the lab could give us the ability to test out new treatments and tackle a spectrum of muscle diseases,” said senior author Dr. Olivier Pourquie, professor of genetics at Harvard University Medical School. “We took the hard route: we wanted to recapitulate all of the early stages of muscle cell development that happen in the body and re-create that in a dish in the lab. We analyzed each stage of early development, and generated cell lines that glowed green when they reached each stage. Going step by step, we managed to mimic each stage of development and coax cells toward muscle cell fate.”

Related Links:

Harvard University Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more