LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Discovery of Pain Receptor on T-cells Could Help Treat Autoimmune Disorders

By LabMedica International staff writers
Posted on 19 Oct 2014
Print article
Inflammatory response and damage to the intenstinal wall (left) could be prevented by injecting TRPV1-deficient T-cells (right). Photo courtesy of Nature Immunulogy, Bertin et al.).
Inflammatory response and damage to the intenstinal wall (left) could be prevented by injecting TRPV1-deficient T-cells (right). Photo courtesy of Nature Immunulogy, Bertin et al.).
Researchers have discovered that T-cells are activated by a pain receptor. The new findings revealed that the receptor helps control intestinal inflammation in mice and that its activity can be adjusted, providing a potential new target for treating certain autoimmune disorders, such as Crohn’s disease and possibly multiple sclerosis.

The study’s findings were published online October 5, 2014, in the journal Nature Immunology. “We have a new way to regulate T-cell activation and potentially better control immune-mediated diseases,” said senior author Eyal Raz, MD, professor of medicine at the University of California, San Diego School of Medicine (USA).

The receptor, called a TRPV1 channel, has a well-recognized role on nerve cells that help regulate body temperature and alert the brain to heat and pain. It is also called the capsaicin receptor because of its role in creating the sensation of heat from chili peppers.

The study is the first to show that these channels are also present on T-cells, where they are involved in gating the influx of calcium ions into cells—a process that is required for T-cell activation. “Our study breaks current dogma in which certain ion channels called CRAC are the only players involved in calcium entry required for T-cell function,” said lead author Samuel Bertin, a postdoctoral researcher in the Raz laboratory. “Understanding the physical structures that enable calcium influx is critical to understanding the body’s immune response.”

T-cells are targeted by the HIV virus and their destruction is why individuals with AIDS have compromised immune function. Specific vaccines also harness T-cells by exploiting their ability to recognize antigens and trigger the production of antibodies, conferring disease resistance. Allergies, in contrast, may occur when T-cells recognize harmless substances as pathogenic.

TRPV1 channels appear to offer a way to manipulate T-cell response as needed for health. Specifically, in in-vitro experiments, researchers showed that T-cell inflammatory response could be reduced by knocking down the gene that encodes for the protein that comprises the TRPV1 channel. Overexpression of this gene was shown to lead to a surge in T-cell activation, which in human health may contribute to autoimmune diseases. T-cells also responded to pharmaceutical agents that block or activate the TRPV1 channel.

In research using mice models, researchers were able to reduce colitis with a TRPV1-blocker, initially developed as a new painkiller. One of the exciting discoveries is that colitis in mice could be treated with much lower doses than what is needed to dull pain. “This suggests we could potentially treat some autoimmune diseases with doses that would not affect people's protective pain response,” Dr. Raz said.

Related Links:

University of California, San Diego School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more