We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Analysis of Immune Cells Predicts Breast Cancer Prognosis

By LabMedica International staff writers
Posted on 20 Nov 2024
Print article
Image: The study findings suggest that tumor-infiltrating lymphocytes are a robust biomarker of breast cancer (Photo courtesy of Shutterstock)
Image: The study findings suggest that tumor-infiltrating lymphocytes are a robust biomarker of breast cancer (Photo courtesy of Shutterstock)

Tumor-infiltrating lymphocytes (TILs) are immune cells crucial in combating cancer. Their presence in a tumor indicates that the immune system is attempting to attack and eliminate cancer cells. TILs can be important indicators in predicting how patients with triple-negative breast cancer will respond to treatment and how the disease might progress. However, assessing these immune cells can yield inconsistent results. Artificial intelligence (AI) has the potential to standardize and automate this process, but proving its effectiveness for healthcare use has been challenging. Now, researchers have explored how different AI models can predict the prognosis of triple-negative breast cancer by analyzing specific immune cells within the tumor. This study, published in eClinicalMedicine, represents a significant step toward incorporating AI into cancer care to enhance patient outcomes.

Researchers at Karolinska Institutet (Stockholm, Sweden) tested ten different AI models to evaluate their ability to analyze tumor-infiltrating lymphocytes in tissue samples from patients with triple-negative breast cancer. The results revealed that the performance of the AI models varied, but eight out of the ten models demonstrated strong prognostic capability, meaning they could predict patient health outcomes with similar accuracy. Even models trained on smaller datasets showed promising results, suggesting that tumor-infiltrating lymphocytes are a reliable biomarker. The study highlights the need for large datasets to compare different AI models and validate their effectiveness before they can be used in clinical practice. Although the findings are promising, further validation is required.

“Our research highlights the importance of independent studies that mimic real clinical practice,” said Balazs Acs, researcher at the Department of Oncology-Pathology, Karolinska Institutet. “Only through such testing can we ensure that AI tools are reliable and effective for clinical use.”

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.