We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Apr 2024
Print article
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope to identify cancerous markers. This lengthy procedure often results in patients waiting weeks or months for their results, causing treatment delays and heightened anxiety. Now, a breakthrough digital medical imaging system promises to transform cancer detection by offering instantaneous results, facilitating timely and effective treatment across all cancer types.

The Photon Absorption Remote Sensing (PARS) system, an innovative, built-from-scratch technology developed by researchers at the University of Waterloo (Ontario, Canada), marks a radical departure from traditional cancer detection methods, promising diagnoses within minutes and enabling rapid surgical intervention. The system utilizes lasers to irradiate tissue samples, producing a comprehensive, high-resolution data set. This data is then processed by an artificial intelligence (AI) system that converts it into a conventional histopathology image for pathologist review. This innovative approach eliminates the need for multiple slide preparations by using digital image filters on a single tissue sample, allowing multiple reads without damaging the tissue, thus preserving it for further necessary analyses.

By substituting traditional procedures with this advanced, AI-driven high-resolution imaging, the PARS system drastically cuts down diagnostic times, conserving time and resources. It has proven highly precise in clinical trials involving human breast tissue; pathologists found no distinguishable differences between images produced by the PARS system and those obtained through traditional methods. The technology demonstrated a 98% accuracy rate in line with established diagnostic techniques.

“This invention will transform digital pathology, enabling surgeons to obtain multiple results simultaneously with just one biopsy and provide accurate diagnoses within minutes,” said Dr. Parsin Haji Reza, lead researcher and a professor in Waterloo’s Department of Systems Design Engineering. “It also ensures thorough removal of cancerous tissue before closing the incision, mitigating the need for further surgeries.”

Related Links:
University of Waterloo

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.