LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis

By LabMedica International staff writers
Posted on 22 Apr 2024
Print article
Image: The new sequencing assay will aid in screening for HPV-associated throat cancer (Photo courtesy of 123RF)
Image: The new sequencing assay will aid in screening for HPV-associated throat cancer (Photo courtesy of 123RF)

Human papilloma virus (HPV) is known to cause various cancers, including those of the genitals, anus, mouth, throat, and cervix. HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated cancer in the United States but currently lacks an effective screening method. It is thought that HPV+OPSCC may begin to develop 10-15 years before it is clinically diagnosed, indicating a window for early detection. Circulating tumor HPV DNA (ctHPVDNA) has emerged as a highly sensitive and specific biomarker for HPV+OPSCC. Taken together, blood-based screening for HPV+OPSCC could enable detection years before the disease is diagnosed.

Investigators from Harvard Medical School (Boston, MA, USA) and partner institutions have developed HPV-DeepSeek, an HPV whole genome sequencing assay with 99% sensitivity and specificity at clinical diagnosis. For their study, they analyzed 28 plasma samples from patients with HPV+OPSCC, collected between 1.3 and 10.8 years prior to their diagnosis, alongside an equal number of age and gender-matched controls. The HPV-DeepSeek and an HPV serology assay identified 22 out of 28 patient samples (79%) as positive for HPV+OPSCC, achieving 100% detection within four years of diagnosis and a maximum lead time of 7.8 years. Furthermore, a machine learning model successfully classified 27 of the 28 cases (96%), with 100% detection within 10 years.

The team used plasma-based PIK3CA gene mutations, viral genome integration events, and HPV serology to orthogonally validate cancer detection with 68% (19/28) of the cohort with multiple cancer signals being detected. Molecular fingerprinting of the HPV genomes confirmed the uniqueness of each viral genome within the cohort, effectively ruling out the possibility of contamination. In cases where tumor blocks from the diagnosis were available (15/28), molecular fingerprinting performed within patients confirmed the same viral genome across time. This groundbreaking study showcases the potential of ctDNA-based screening to detect HPV-associated cancers up to a decade before clinical diagnosis becomes possible, paving the way for potentially transformative advancements in cancer screening.

Related Links:
Harvard Medical School

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.