LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bioinformatics Tool to Identify Chromosomal Alterations in Tumor Cells Can Improve Cancer Diagnosis

By LabMedica International staff writers
Posted on 25 Mar 2024
Print article
Image: Toroidal nuclei marked in magenta and micronuclei in green (Photo courtesy of IRB Barcelona)
Image: Toroidal nuclei marked in magenta and micronuclei in green (Photo courtesy of IRB Barcelona)

Chromosomal instability is a common characteristic in solid tumors, playing a crucial role in the start, progression, and spread of cancer. This condition arises from alterations in the chromosome number and structure during cell division, leading to DNA changes and impacts on cellular functions. Furthermore, chromosomal instability contributes to tumor development and progression, increases tumor diversity, and fosters resistance to cancer treatments. Now, a new bioinformatics tool that can identify these chromosomal alterations characteristic of cancer cells could improve diagnosis and help design personalized treatment plans.

This new detection system, known as QATS (QuAntification of Toroidal nuclei in biological imageS), has been designed by a research team from the University of Barcelona (Barcelona, Spain) and IRB Barcelona (Barcelona, Spain). This computational biological imaging processing tool can improve tumor research and classification by automatically identifying and quantifying the phenotypes associated with chromosomal instability in the nuclei of cancer cells. QATS focuses on detecting and quantifying toroidal nuclei, which are new biomarkers of chromosomal instability, in biological images. Unlike normal nuclei, toroidal nuclei are phenotypically different as they have a ring-like shape with a void containing cytosolic material. Recognized recently as critical biomarkers for chromosomal instability, toroidal nuclei offer a new avenue for understanding and combating cancer.

Until now, the assessment of chromosomal instability in cancer cells has been primarily based on quantifying micronuclei, which are irregular structures derived from the cell nucleus that may contain chromosomes or chromosomal fragments. By introducing the assessment of toroidal nuclei into both research and clinical settings, there is significant potential for improving tumor classification and developing treatments tailored to individual patients. The QATS system has already proven effective in preclinical studies involving cancer cell lines by demonstrating its capability to identify and quantify toroidal nuclei accurately.

“In the future, the application of QATS in more complex biological scenarios — human tissue samples from patient biopsies — will represent a breakthrough for the scientific and medical communities to improve cancer diagnosis and patient treatment”, concluded the researchers.

Related Links:
University of Barcelona
IRB Barcelona

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.